Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Определение перемещений и напряжений при ударном нагружении элементов конструкций Оценка ударной

Тип Реферат
Предмет Промышленность и производство
Просмотров
967
Размер файла
2 б
Поделиться

Ознакомительный фрагмент работы:

Определение перемещений и напряжений при ударном нагружении элементов конструкций Оценка ударной

Отчет по лабораторной работе

«Определение перемещений и напряжений при ударном нагружении элементов конструкций»

Цель работы: определение динамических перемещений и напряжений в балке и пружине; сравнение расчетных и экспериментальных значений определяемых величин. Удар возникает при взаимодействии двух или нескольких тел (элементов конструкций) с резко различными скоростями. Ударному нагружению подвергаются детали многих машин, имеющих механизмы возвратно-поступательного движения и работающих при высоких скоростях, вследствие наличия зазоров в местах сопряжения деталей. В ряде конструкций ударное нагружение является штатным режимом работы (молотки для клепки, отбойные молотки, кузнечные молоты, строительные копры и сваи, стволы стрелкового и артиллерийского оружия).

Изучение методики испытаний материалов на ударный изгиб; определение ударной вязкости углеродистой стали и серого чугуна; оценка склонности испытанных материалов к хрупкому разрушению.

1 Определение динамических перемещений и напряжений в балке

Постановка опыта. Консольная балка (рессорная сталь 60С2А; Е =2•105 МПа; р =7,8•10-3 кг/см3) размерами h*b*I = 3,3 х 18,2 х 350 мм3 испытывает поперечный удар груза массой т = 0,5 кг и весом Р = mg с разной высоты Н. Коэффициент приведения массы балки в сечение удара кпр.=33/140. В результате проведения опытов на лабораторной установке получены следующие экспериментальные значения динамических перемещений (прогибов) балки: H=50 мм ~ δЭД =29 мм; H=100 мм ~ δЭД =38 мм; H=150 мм ~ δЭД=42 мм; H=200 мм ~ δЭД=50 мм; H=250 мм ~ δЭД=57 мм.

Схема лабораторной установки для определения динамических перемещений балки:

1- консольная балка; 2 - жесткая заделка; 3 - ударяющий груз; 4 - направляющий стержень; 5- скользящая втулка

Требуется: определить расчетные динамические перемещения δДСТкД и напряжения σД= σСТкД, экспериментальные динамические напряжения σЭДДδЭДД. Построить графики δД -H и δЭД -H, σД -H и σЭД -H. Найти отклонения расчетных величин δД, σД от экспериментальных δЭД, σЭД, δ=100(δД - δЭД)/δЭД; объяснить причины отклонений.

1. Вычисляем наибольшие перемещения и напряжения при статическом нагружении балки грузом Р:


δСТ*=Pl3 /3EJx; P=mg;

Jx=bh3 /12=18,2*3,33 /12=54,5 мм4 =54,5*10-12 м4;

δСТ*=0,5*9,8*0,3503 / 3*2*105*106*54,5*10-12=6,42*10-3 м =6,42 мм;

σСТ=Mxmax /Wx=Pl/Wx;

Wx= bh2 /6=18,2*3,32 /6=33,0 мм3=33,0*10-9 м3;

σСТ=0,5*9,8*0,350 /33,0*10-9=52,0*106 Па=52,0 МПа.

2. Определяем коэффициенты динамичности для реализованных в экспериментах высот Н падения груза Р:

H=50 мм: кД= 4,93;

H=100 мм: кД= 6,47;

H=150 мм: кД= 7,66;

H=200 мм: кД= 8,67;

H=250 мм: кД= 9,56;

3. Находим расчётные значения динамических перемещений и напряжений:

H=50 мм: δДСТкД=6,42*4,93=31,6 мм;

σД= σСТкД=52,0*4,93=256 МПа;


Н=100 мм: δД=6,42*6,47=41,5 мм; σД=52,0*6,47=336 МПа;

Н=150 мм: δД=6,42*7,66=49,2 мм; σД=52,0*7,66=398 МПа;

Н=200 мм: δД=6,42*8,67=55,7 мм; σД=52,0*8,67=451 МПа;

Н=250 мм: δД=6,42*9,56=61,4 мм; σД=52,0*9,56=497 МПа;

4. Экспериментальные значения динамических напряжений:

H=50 мм: σЭДДδЭДД=256*29/31,6=235 МПа;

H=100 мм: σЭД=336*38/41,5=308 МПа;

H=150 мм: σЭД=398*45/49,2=364 МПа;

H=200 мм: σЭД=451*51/55,7=413 МПа;

H=250 мм: σЭД=497*56/61,4=453 МПа;

5. По полученным расчетным и экспериментальным результатам строим графики: δД -H и δЭД -H; σД -H и σЭД -H.

Зависимости расчетных и экспериментальных динамических перемещений балки от высоты падения груза.

Изменения расчетных и экспериментальных динамических напряжений балки от высоты падения груза.

6. Вычисляем отклонения расчетных от экспериментальных величин при максимальной высоте падения груза:

δδ=100(δД ЭД)/δЭД=100(61,4-56)/56=9,6%.

2 Определение динамических перемещений и напряжений в пружине

Постановка опыта. Винтовая пружина сжатия (пружинная сталь 60С2А; Е=2*105 МПа; ρ=7,8*10-3 кг/см3; средний диаметр D =38,5 мм; диаметр проволоки d =3,2 мм; число витков, включая два опорных, n1=18; число рабочих витков n=16) испытывает продольный удар груза массой т =0,5 кг и весом Р =mg с разной высоты Н. Коэффициент приведения массы пружины в сечение удара кпр=1/3. При статическом нагружении пружины наибольшие касательные напряжения τст=kPD/2Wp, где Wp=nd3/16;

к=0,25(4D-d)/(D-d)+0,615d/D - коэффициент, учитывающий влияние кривизны витков и поперечной силы. Для индекса пружины т=D/d=38,5/3,2=12,0 значение к = 1,14. В результате проведения опытов на лабораторной установке получены следующие экспериментальные значения динамических перемещений (осадки) пружины: Н= 50 мм ~ λэд =22 мм; Н = 100 мм ~ λэд =29 мм; Н=150 мм ~ λэд=36 мм; H=200мм ~ λэд=41 мм; H=250мм~ λэд =45 мм.

Схема лабораторной установки для определения динамических осадок пружины:

1 - пружина; 2 - основание; 3 - ударяющий груз; 4 - направляющий стержень; 5 - скользящая втулка; 6 - стержень

Требуется: определить расчетные динамические перемещения λдСТкд и касательные напряжения τдсткд; экспериментальные динамические напряжения τЭДДλЭДД. Построить графики λд - Н и λЭД - Н, τд - Н и τЭД - Н. Найти отклонения расчетных величин λд,τд от экспериментальных λЭД, τЭД, %: δ=100(λд-λЭД)/λЭД; объяснить причины отклонений.

1.Вычисляем перемещения (осадку) и касательные напряжения при статическом нагружении пружины грузом Р:

λст*=8PD3/Gd4=8*0.5*9.8*(0.0385)3*16/0.8*105*106(0.0032)4=4.27*10-3 м=4,27 мм;


τст=1,14PD/2Wp; Wp=πd3/16=3.14*3.23/16=6.43 мм3=6,43*10-9 м3;

τст=1,14*0,5*9,8*0,0385/2*6,43*10-9=16,7*106 Па=16,7 МПа.

Масса пружины

m1=ρπDn1πd2/4=7.8*10-3*3.14*3.85*18*3.14*0.322/4=0.136 кг.

2.Определяем коэффициенты динамичности для реализованных в экспериментах высот H падения груза Р:

H=50мм: кД= 5.74;

H=100мм: кД= 7.36;

H=150мм: кД= 9.09;

H=200мм: кД= 10.3;

H=250мм: кД= 11.4;

3.Находим расчетные значения динамических перемещений и напряжений:

H =50 мм: λд= λСТкд=4,27*5,74 =24,5 мм;

τдсткд=16,7*5,74 = 95,9 МПа;

H=100мм: λд=4,27*7,63=32,6 мм; τд=16,7*7,63 = 127 МПа;

H=150мм: λд=4,27*9,09=38,8 мм; τд=16,7*9,09 = 152 МПа;

H=200мм: λд=4,27*10,3=44,0 мм; τд=16,7*10,3 = 172 МПа;

H=250мм: λд=4,27*11,4=48,7 мм; τд=16,7*11,4 = 190 МПа.

4. Экспериментальные значения динамических напряжений:

H =50 мм: τЭДДλЭДД=95,9*23/24,5=90 МПа;

H=100мм: τЭД=127*30/32,6=117 МПа;

Н=150мм: τЭД=152*36/38,8=141 МПа;

H=200 мм: τЭД=172*41/44,0=160 МПа;

H=250 мм: τЭД=190*45/48,7=176 МПа.

5.По полученным расчетным и экспериментальным результатам строим графики: λд - Н и λЭД - Н, τд - Н и τЭД - Н.

Зависимости расчетных и экспериментальных динамических перемещений пружины от высоты падения груза.


Изменения расчетных и экспериментальных динамических напряжений пружины от высоты падения груза.

6. Находим отклонения расчетных от экспериментальных величин при максимальной высоте падения груза:

δ=100(λд-λЭД)/λЭД=100(48,7-45)/45=8,2%.

3 Оценка ударной вязкости пластичного и хрупкого материалов

Многие детали машин и элементы конструкций испытывают постоянно или периодически ударные нагрузки (кузнечные молоты и штампы; строительные копры и сваи; стволы стрелкового и артиллерийского оружия; режущий инструмент при обработке граненых заготовок; отбойные молотки; двигатели внутреннего сгорания при детонации; шасси транспортных средств при скоростном движении по неровной дороге). На практике нередки случаи, когда детали, изготовленные из пластичных сталей, при ударном нагружении преждевременно выходят из строя в результате хрупкого или вязкого разрушения. Хрупкое разрушение такое, которое происходит путем отрыва одних частиц материала от других без заметных макропластических деформаций. Поверхность хрупкого излома имеет кристаллический блеск. Вязкое разрушение совершается при значительных макропластических деформациях путем сдвига по плоскостям действия наибольших касательных напряжений. Поверхность вязкого разрушения имеет матовый оттенок. В некоторых случаях наблюдается смешанный характер разрушения, когда примыкающая к надрезу часть излома разрушается хрупко, а остальная -вязко. Хрупкое разрушение более опасно, поскольку оно в меньшей мере предсказуемо, совершается практически мгновенно, имеет более широкий диапазон рассеивания разрушающих нагрузок. Переходу пластичного материала в обычных условиях в хрупкое состояние способствуют следующие факторы: характерное для удара увеличение скорости нагружения; изменение за счет концентраторов напряжений характера напряженного состояния от линейного (гладкие участки образцов или деталей) к местному трехосному (надрезанные участки образцов или деталей с выточками, отверстиями, галтелями, шпоночными канавками, резьбовыми и шлицевыми участками); пониженные рабочие температуры, характерные в первую очередь для районов Крайнего Севера и Сибири.

Для оценки склонности материала к хрупкому разрушению проводятся динамические испытания при различных способах нагружения (растяжении, изгибе, кручении). По результатам испытаний определяют ударную вязкость материала, которая представляет собой затраченную на разрушение образца энергию, приходящуюся на единицу площади сечения в месте разрушения. Результаты испытаний на ударную вязкость имеют сравнительный характер, поэтому ГОСТ 9454-78 рекомендует форму и размеры образцов. Значения ударной вязкости зависят от температуры испытаний. Низкая температура, при которой наблюдается резкое падение ударной вязкости, называется критической температурой хрупкости (хладоломкость). Существенное снижение ударной вязкости углеродистых сталей может наблюдаться в диапазоне 400...550 °С за счет выпадения углерода в виде микродисперсной фазы, затрудняющей развитие пластических деформаций (синеломкость). Снижение ударной вязкости сталей может происходить также в интервале 700... 1000 °С за счет оплавления границ зерен (красноломкость).

Наибольшее распространение на практике получили испытания на ударный изгиб призматических образцов I типа размерами 10 х 10 х 55 мм3 с U-образ-ным надрезом радиусом 1 мм и глубиной 2 мм, проводимые на маятниковых копрах (МК-30 и др.). Перед испытанием задают начальную энергию Kt ма ятника, устанавливают образец и проводят его разрушение, записывают энергию вылета маятника К2 после разрушения образца, определяют остаточную энергию Кост для вычисления энергии трения Кгр.

Требуется: определить энергию трения Ктр =К1 — K1ост; энергию

К = К1 – К2- Kтр, затраченную на разрушение образца; ударную вязкость КС = K/Fmin (кГс м/см2; Дж/см2); Fmin = 0,8 см2. Сравнить склонность углеродистой стали и серого чугуна к хрупкому разрушению.

Результаты испытаний на ударную вязкость

Углеродистая сталь

Серый чугун

К1

кГс м

К2

кГс • м

К1ост

кГс м

К1

кГс м

К2

кГс м

K1ост

кГс м

14,0

2,80

13,6

1.10

0.20

1,00

1. Выполняем эскиз образца для испытаний на ударный изгиб.

Образец для испытаний на ударный изгиб

2. Вычисляем энергию трения, расходуемую на преодоление сил трения в подвижных соединениях маятникового копра МК-30, сил сопротивления воздуха, потери в опорах и др.:

• для углеродистой стали Kтр = К1-К1ост = 15,0 - 13,6 = 1,40 кГс м;

• для серого чугуна Ктр= 1,10 - 1,0 = 0,10 кГс м.

3. Находим энергию, затраченную на разрушение образцов:

• из углеродистой стали; К = K1 – К2 - Kтр = 15,0 - 2,80 - 1,40 =
= 10,8 кГс м;

• из серого чугуна: К= 1,10-0,20-0,10 = 0,80 кГс м.

4. Определяем ударную вязкость:

Для углеродистой стали КС= K/Fmin=10.8/0.8=13.5 кГс м/см2 =135 Дж/см2

Для серого чугуна КС =0,80/0.8=1 кГс м/см2 =10 Дж/см2

Выводы

1.Отклонения в большую сторону расчетных от экспериментальных динамических перемещений и напряжений в опытах № 1 и № 2 обусловлены тем, что небольшая часть энергии удара затрачивается на деформирование в области удара, внутреннее трение в материале балки и пружины, потери в опорах, а также погрешностями измерения динамических перемещений балки и пружины.

2.Поскольку отклонения данных расчета от данных эксперимента сравнительно небольшие, то приближенная теория удара может применяться в инженерных расчетах на прочность и жесткость элементов конструкций.

3. Изучена методика испытаний материалов на ударный изгиб.

4. Определены значения ударной вязкости углеродистой стали и серого чугуна.

5. Результаты испытаний показывают, что склонность серого чугуна к хрупкому разрушению при ударных нагрузках значительно выше, чем углеродистой стали, т. к. ударная вязкость серого чугуна существенно меньше, чем углеродистой стали.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно