Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Расчёт тарельчатого абсорбера 2

Тип Реферат
Предмет Промышленность и производство
Просмотров
968
Размер файла
368 б
Поделиться

Ознакомительный фрагмент работы:

Расчёт тарельчатого абсорбера 2

3 Расчёт тарельчатого абсорбера

3.1 Определение условий равновесия процесса

Определим равновесные концентрации ацетона в воде. В случае абсорбции хорошо поглощаемых газов (паров) расчет равновесных концентраций ведут по закону Рауля [2] c.16:

, (3.1)

где Õ ‑ давление в абсорбере, Па;

Pн‑ давление насыщенных паров ацетона при температуре абсорбции (t=26 °C), Па;

x* ‑ равновесная концентрация ацетона в воде, ;

у ‑ концентрация ацетона в воздухе, .

Давление насыщенных паров ацетона при температуре абсорбции (t = 26°С) по [3] рисунок XIV равно 244 мм. рт. ст. Пересчитаем в Па:

Па

, (3.2)

Величины равновесных концентраций в жидкости достаточно рассчитать для диапазона значений концентраций в газовой фазе от нуля до величины, которая в 1,2-1,5 раз превышает начальную концентрацию абсорбтива.

Для упрощения расчетов материального баланса необходимо сделать пересчет абсолютных концентраций в относительные. Связь между относительной концентрацией и абсолютной выражается следующей формулой по [3] c.283:

, (3.3)

, (3.4)


где у ‑ абсолютная концентрация ацетона в газовой фазе, ;

Y ‑ относительная концентрация ацетона в газовой фазе, ;

x ‑ абсолютная концентрация ацетона в жидкой фазе, ;

X ‑ относительная концентрация ацетона в жидкой фазе, ;

Таблица 3.1 - Расчет равновесной линии

x*,

y,

X*,

Y,

0

0

0

0

0,077

0,01

0,083

0,01

0,15

0,02

0,18

0,02

0,23

0,03

0,30

0,03

0,31

0,04

0,45

0,042

0,38

0,05

0,61

0,053

По определенным значениям концентраций строится линия равновесия Х* = m∙Y (рисунок 3.1).

Рисунок 3.1 – Линия равновесия. Определение минимального расхода поглотителя

Коэффициент распределения m найдем как тангенс угла наклона линии равновесия к оси Х. Поскольку линия равновесия в данном случае не прямая, то коэффициент распределения будем рассчитывать как среднее арифметическое, разбив линию равновесия на ступени и рассчитав тангенс угла наклона на каждой из них. Проделав эти операции, получили, что коэффициент распределения m равен 0,1006 кмоль воды/кмоль воздуха.

3.2 Расчет материального баланса

3.2.1 Определение молярного расхода компонентов газовой смеси

Пересчитаем объемный расход при нормальных условиях (T0=273K, P0=1,013×105 Па) в объемный расход при условиях абсорбции (Т=299К, Р=0,25×106 Па).

, (3.5)

где Vсм0 – расход при нормальных условиях, .

.

Для удобства дальнейших расчетов переведем объемный расход газовой смеси в молярный.

, (3.6)

где Vсм0 ‑ объемный расход газовой смеси при нормальных условиях, ;

Gсм ‑ молярный расход газовой смеси, .

.

Молярный расход инертного газа определяется по уравнению [2] c.17:

, (3.7)

где ун ‑ исходная концентрация ацетона в газовой смеси, ;

G ‑ молярный расход инертного газа, .

Из условия задания ун=0,04.

.

Концентрацию ацетона на выходе из абсорбера yк, находим по формуле [2] c.17:

, (3.8)

где j – степень извлечения, j=0,92 (из задания).

.

Величины yк, yн пересчитаем в относительные по формуле (3.3):

,

.

Для определения молярного расхода ацетона M, который поглощается, служит следующее уравнение [2]:

, (3.9)

.

2.2.2 Определение расхода поглотителя ацетона из газовой смеси

Для определения минимального молярного расхода чистого поглотителя Lмин служит следующее уравнение [2]:

, (3.10)

где X*к‑ равновесная относительная концентрация ацетона в воде на выходе из аппарата, ;

Хн ‑ исходная относительная концентрация ацетона в воде, .

Равновесную относительную концентрацию ацетона в воде на выходе из аппарата определим по линии равновесия (рисунок 3.1). Для противоточных абсорберов X*к=f(Yн). По графику максимально возможная концентрация ацетона в воде при условиях абсорбции составляет X*кmax=0,408.

Т.к. в реальном процессе абсорбции используется не минимальный расход поглотителя, а несколько больший (для ускорения процесса), то необходимо пересчитать минимальный расход поглотителя на рабочий расход L с учетом коэффициента избытка поглотителя [4]

, (3.11)

где a ‑ коэффициент избытка поглотителя, принимаем равным 1,5.

С увеличением расхода поглотителя (т. е. с увеличением коэффициента избытка поглотителя) снижаются допустимые скорости газа в аппарате, по которым находят его диаметр. Поэтому следует выбирать такое соотношение между размерами абсорбционного аппарата и расходом поглотителя, при котором размеры аппарата будут оптимальными [5].

.

2.2.3 Определение рабочей концентрации ацетона в поглотителе на выходе из абсорбера

Для определения рабочей концентрации служит уравнение [2]:

, (3.12)

2.2.4 Построение рабочей линии абсорбции ацетона и определение числа единиц переноса

По полученным значениям концентраций строится график (рисунок 3.2)

Рисунок 3.2 - X – Y диаграмма при давлении р = 0.25 МПа

3.3 Определение рабочей скорости газа и диаметра аппарата

Для начала необходимо выбрать тип тарелки. Большое разнообразие тарельчатых контактных устройств затрудняет выбор оптимальной конструкции тарелки. Выберем колпачковый тип тарелки, а именно тарелки колпачковые однопоточные стальные разборные типа ТСК-Р, так как они могут работать при большой нагрузке по жидкости, у них большая область устойчивой работы, большая эффективность, они обладают лёгкостью пуска и установки.

Для колпачковых тарелок предельно допустимую скорость рекомендуется рассчитывать по формуле:

(3.13)

где ρx и ρy –плотности жидкой и газообразной фазы соответственно, ρx = 998 кг/м3 [3];

dk-диаметр колпачка ,м;

hk-расстояние от верхнего края колпачка до вышерасположенной тарелки , м.

Плотность газообразной фазы найдем по формуле [3]:

, (3.14)

где Мсм – молярная масса парогазовой смеси, кг/кмоль;

Т0, р0 – соответственно температура и давление при нормальных условиях (Т0 = 273К, р0 = 1,013∙105 Па);

t – температура абсорбции равная 26 °С по заданию;

р – давление в абсорбере равное 0,25 МПа.

Молярная масса парогазовой смеси рассчитывается по формуле [3]:

, (3.15)

где Мац – молярная масса ацетона равная 58 кг/кмоль;

Мвз – молярная масса воздуха равная 29 кг/кмоль;

ун‑ исходная концентрация ацетона в газовой смеси,

Получаем,

Мсм = 58∙0,04 + 29∙(1-0,04) = 30,16 кг/кмоль,

кг/м3.

Диаметр колпачка dk и расстояние от верхнего края колпачка до вышерасположенной тарелки hk выберем согласно [6] таблица 24.2: dk = 0,1 м, hk = 0.3м.

Тогда предельно допустимая скорость будет равна:

Рабочая скорость будет равна [1]

, м/с

Диаметр абсорбера находим из уравнения расхода [1]:

, (3.16)

где V – объёмный расход газа при условиях в абсорбере, м3/с. Отсюда

Выбираем стандартный диаметр обечайки абсорбера dст=2,4 м. При этом действительная рабочая скорость газа в абсорбере [1]

, м/с.

3.4 Высота светлого слоя жидкости

Высоту светлого слоя жидкости на тарелке h0 находим из соотношения[1]:

, (3.17)

где hпер – высота переливной перегородки, согласно [6] hпер = 0,05 м;

q – линейная плотность орошения, м3/(м∙с).

Рассчитаем линейную плотность орошения q [1]:

q = Q/Lc, (3.18)

где Q – объёмный расход жидкости м3/с;

Lс – периметр слива, Lс = 1,775 м [6].

Объемный расход жидкости равен:

, (3.19)

где L – молярный расход чистого поглотителя, кмоль/с;

ρх – плотность чистого поглотителя при температуре абсорбции, кг/м3;

Мв – молярная масса воды равная 18 кг/кмоль.

, м3

3/(м∙с)

Подставив получим:

3.5 Расчёт коэффициентов массоотдачи

Коэффициент массопередачи определяют по уравнению аддитивности фазовых диффузионных сопротивлений[1] :

, (3.20)

где βх и βу – коэффициенты массоотдачи, отнесённые к единице рабочей площади тарелки соответственно для жидкой и газовой фаз, кг/(м2·с);

m – коэффициент распределения,

m = 0,1006 кмоль воды/кмоль воздуха.

Для жидкой фазы коэффициент массоотдачи [1]:

, (3.21)

где Dx – коэффициент молекулярной диффузии распределяемого компонента в жидкости, м2/с;

ε – газосодержание барботажного слоя,м33;

U – плотность орошения;

μх – вязкость воды, равная 1 мПа∙с по [3] рисунок V;

μу - вязкость воздуха, равная 0,018 мПа∙с по [3] рисунок VI;

h0 – высота светлого слоя жидкости, м.

Плотность орошения равна [1]:

где L – молярный расход поглотителя, кмоль/с;

МВ – молярная масса воды, кг/кмоль;

ρx – плотность воды, при температуре абсорбции, кг/м3.

Согласно [1] рассчитаем Dх

, (3.22)

где Dx20 – коэффициент диффузии в жидкости при t = 20°C, м2/с;

b – температурный коэффициент;

t – температура абсорбции.

Коэффициент диффузии в жидкости при 20°С можно вычислить по приближенной формуле [1]:

, (3.23)

где А, В – коэффициенты ассоциации, учитывающие отклонения от нормы в поведении растворенного вещества и растворителя. Согласно [4] c.660 А= 1, для воды В = 4,7;

υац и υв – мольные объемы ацетона и воды соответственно при нормальной температуре кипения, (υв = 18,9 см3/моль, υац=74 см3/моль, [3]);

μX – вязкость жидкости при 20 °С, равная 1 мПа∙с.

.

Температурный коэффициент b определяем по формуле [1]:

, (3.24)

где μx и ρx принимаем при температуре 20 °С [3]

.

При температуре абсорбции 26 °С коэффициент диффузии DX будет равен:

.

Газосодержание барботажного слоя определяем из соотношения [1]

, (3.25)

где Fr – критерий Фруда.

Критерий Фруда рассчитывается по формуле [1]:

, (3.26)

где wТ – скорость газа в рабочем сечении тарелки, м/с;

h0 – высота газожидкостного слоя, м;

g = 9.81 м2/с.

Скорость газа в рабочем сечении тарелки найдем по [1]

, (3.27)

где V – объемный расход газовой смеси при условиях абсорбции, м3/с;

F – рабочее сечение тарелки, м2. В соответствии с [6] таблица 5.2 для колпачковых тарелок типа ТСК-Р с диаметром колонны 2,4 м F = 3,48 м2.

м/с

.

Тогда газосодержание барботажного слоя:

.

Подставим все полученные значения в формулу (3.21)

Для газовой фазы коэффициент массоотдачи [1]:

, (3.28)

где Fс – свободное сечение тарелки, равное 12,3% или 0,123 по [1] Приложение 5.2;

Dy – коэффициент диффузии в газовой фазе, м2/с;

wт – скорость газа в рабочем сечении тарелки, м/с.

Коэффициент диффузии ацетона в воздухе при атмосферном давлении и температуре t = 0°С по [8] D = 1,09∙10-5 м2/с. Пересчитаем это значение на условия абсорбции по формуле [3]:

, (3.29)

где Т0, р0 – соответственно температура и давление при нормальных условиях (Т0 = 273К, р0 = 1,013∙105 Па);

Т – температура абсорбции, К;

р – абсолютное давление в абсорбере, Па.

Подставив , получим:

м2/с.

Подставив данные в формулу (3.), получаем

Переведём коэффициенты массоотдачи в нужную размерность

, (3.30)

где Мсм – молярная масса парогазовой смеси, кг/кмоль;

ρу – плотность газовой смеси, кг/м3.

.

, (3.31)

где Мсм – молярная масса жидкой смеси, кг/кмоль;

ρx – плотность жидкости, кг/м3.

Молярная масса жидкой смеси равна:

, (3.32)

где хк – абсолютная мольная доля ацетона в воде, кмоль ацетона/кмоль смеси.

Произведем перерасчет из относительных в абсолютные мольные доли[1]:

, (3.33)

кмоль ацетона/кмоль ж. смеси.

.

Тогда коэффициент массотдачи:

.

Рассчитаем теперь коэффициент массопередачи по формуле (3.20)

.

3.6 Поверхность массопередачи и высота абсорбера

Поверхность массопередачи в абсорбере рассчитывается по уравнению:

, (3.34)

где М - молярный расход ацетона, кмоль/с;

КУ – коэффициент массопередачи, кмоль/м2∙с;

ΔYср – движущая сила процесса, кмоль/кмоль.

Движущая сила может быть выражена в единицах концентрации как жидкой, так и газовой фаз. Принимая модель идеального вытеснения в потоках обеих фаз, определим движущую силу в единицах концентраций газовой фазы:

(3.35)

где ΔYб и ΔYм – большая и меньшая движущие силы на входе потоков в абсорбер и на выходе из него, кмоль ацетона/кмоль воздуха.

(3.36)

где YХн и YХк – концентрация ацетона в газе, равновесные с концентрациями в жидкой фазе (поглотителе) соответственно на входе в абсорбер и на выходе из него:

Отсюда

Тогда требуемое число тарелок [1]

, (3.37)

где Fраб - рабочее сечение тарелки, которое равно [6] 3,48 м2.

Принимаем n = 10 тарелок.

3.7 Выбор расстояния между тарелками и определение высоты абсорбера

Расстояние между тарелками принимают равным или несколько большим суммы высот барботажного слоя (пены) hп и сепарационного пространства hc [1]:

, (3.38)

Высоту пены рассчитаем по формуле

, (3.39)

Подставив получим

Высоту сепарационного пространства рассчитываем исходя из допустимого брызгоуноса с тарелки, принимаемого равным 0.1 кг жидкости на 1 кг газа используя формулу [1]:

, (3.40)

где Е – масса жидкости уносимой с 1 м2 рабочей площади сечения колонны, кг/м2·с;

σ – поверхностное натяжение, σ = 72.8 мН/м [3].

Согласно графику для определения уноса на колпачковых тарелках [1] рисунок 5.5:

Из (3.) выразим hс :

Найдём расстояние между тарелками по формуле (3.41)

, (3.41)

Принимаем h = 0.3 м [6] таблица 24.2.

Рассчитаем высоту тарельчатой части по формуле (3.42):

, (3.42)

Подставив значения, получим

.

Расстояние между нижней тарелкой и днищем абсорбера примем по [7] равным 5 м, а расстояние между верхней тарелкой и крышкой абсорбера 1.6, тогда общая высота абсорбера :

3.8 Гидравлическое сопротивление тарелок абсорбера

Гидравлическое сопротивление тарелок абсорбера определяют по формуле [2]:

(3.43)

Полное гидравлическое сопротивление одной тарелки складывается из трёх слагаемых:

, (3.44)

Гидравлическое сопротивление сухой тарелки

, (3.45)

где ξ – коэффициент сопротивления сухой тарелки, для колпачковой тарелки ξ = 4,5 [6];

FC – относительное свободное сечение для прохода газа по тарелке, для колпачковой тарелки FC =0,123 [1].

Получим:

Гидравлическое сопротивление газожидкостного слоя (пены) на тарелке [9] c. 229:

(3.46)

где g – ускорение свободного падения, м2/с;

ρх – плотность жидкости, кг/м3;

h0 – высота светлого слоя жидкости, м.

Гидравлическое сопротивление, обусловленное силами поверхностного натяжения [2]:

(3.47)

где σ – поверхностное натяжение жидкости, равное 72,8∙10-3 Н/м;

dЭ – эквивалентный диаметр щелей, через которые газ проходит в жидкость на тарелке, м.

Рассчитаем эквивалентный диаметр для треугольной прорези со сторонами 16.55 мм, 16.55 мм, 14 мм [6].

Тогда полное гидравлическое сопротивление

Гидравлическое сопротивление всех тарелок абсорбера

3.9 Определение диаметра штуцеров

Для расчетов диаметров штуцеров служит следующее уравнение [1] с.16:

, (3.48)

где wр ‑ рекомендуемая среднерасходная скорость перемещения среды в штуцере,м/с;

Q – объемный расход, м3/с.

Руководствуясь [1] примем ωp газа=15 м/с, ωp жидк.=0.8 м/с.

Так как давление в абсорбере небольшое, согласно рекомендациям [12] выберем штуцера ОСТ 26 – 1404.

Объемный расход жидкой смеси равен:

(3.49)

где L – мольный расход поглотителя, кмоль/с;

М – молярная масса поглотителя, кг/кмоль;

ρ – плотность поглотителя при температуре абсорбции, кг/м3.

Определяем диаметр основных технических штуцеров для подвода и отвода жидкой смеси:

.

Примем штуцер с Dy=60 мм.

Определяем диаметр основных технических штуцеров для подвода и отвода газовой смеси.

.

Примем штуцер с Dу=500 мм.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
Физика
История
icon
137666
рейтинг
icon
5834
работ сдано
icon
2641
отзывов
avatar
Математика
История
Экономика
icon
137419
рейтинг
icon
3045
работ сдано
icon
1326
отзывов
avatar
Химия
Экономика
Биология
icon
92238
рейтинг
icon
2003
работ сдано
icon
1260
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
51 607 оценок star star star star star
среднее 4.9 из 5
РАНХиГС
Все отлично выполнил. Быстро отвечал. Если что-то нужно было исправить согласно с описание...
star star star star star
Институт экономики и Культуры
Отличная работа!Отличный исполнитель,всем рекомендую.Все четко и по делу.Просто суппер))))
star star star star star
НГПУ им. К. Минина
Заказ выполнен быстро и в срок, Без замечаний, реферат очень хороший! 😇
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

В программе Micro-cap v12, написать название графиков в 3 задании и сделать вывод под каждым из них

Отчет по практике, Радиоборудование и схемотехника

Срок сдачи к 21 апр.

только что

Ответы по элктроэнергетике

Ответы на билеты, «Надежность электроэнергетических систем»

Срок сдачи к 21 апр.

только что

Нужно выполнить 14заданий 3 вариант из каждого задания

Решение задач, Математика

Срок сдачи к 22 апр.

1 минуту назад

добавление новых условий в программу на С++

Решение задач, Объектно-ориентированное программирование

Срок сдачи к 30 апр.

1 минуту назад

Решить 3 работы

Контрольная, Геодезия

Срок сдачи к 22 апр.

1 минуту назад
1 минуту назад

Практическое задание «Анализ бюджетной политики субъекта Рф»

Презентация, Государственная бюджетная политика

Срок сдачи к 23 апр.

1 минуту назад

Три лабораторных

Решение задач, теория вероятностей и математическая статистика

Срок сдачи к 25 апр.

1 минуту назад

Решить 2 задачи

Решение задач, Сопротивление материалов

Срок сдачи к 30 апр.

2 минуты назад

Пособия для граждан с детьми 35 страниц

Курсовая, Социальная защита населения

Срок сдачи к 29 апр.

2 минуты назад
2 минуты назад

Курсовая по предмету «Теория государства и права»

Курсовая, Теория государства и права

Срок сдачи к 30 апр.

2 минуты назад

Разработка приложения с трехуровневой архитектурой на Java

Курсовая, Программирование

Срок сдачи к 4 мая

2 минуты назад
3 минуты назад

в тесте добавить ссылки на закон, откуда взяли ответ

Контрольная, Правовые основы профессиональной деятельности

Срок сдачи к 24 апр.

3 минуты назад

6 задач

Решение задач, Основы теории вычислительных систем

Срок сдачи к 30 апр.

3 минуты назад

Сделать расчеты для курсовой

Курсовая, теоретические основы электротехники

Срок сдачи к 6 мая

3 минуты назад

Условие задание прикреплено в файл.

Решение задач, Информатика и программирование

Срок сдачи к 24 апр.

4 минуты назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно