Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Оценивание параметров и проверка гипотез о нормальном распределении

Тип Реферат
Предмет Математика
Просмотров
972
Размер файла
31 б
Поделиться

Ознакомительный фрагмент работы:

Оценивание параметров и проверка гипотез о нормальном распределении

Расчетная работа

Выполнил Шеломанов Р.Б.

Кафедра математической статистики и эконометрики

Московский государственный университет экономики, статистики и информатики

Москва 1999

ЗАДАНИЕ № 23

Продолжительность горения электролампочек (ч) следующая:

750750756769757767760743745759
750750739751746758750758753747
751762748750752763739744764755
751750733752750763749754745747
762751738766757769739746750753
738735760738747752747750746748
742742758751752762740753758754
737743748747754754750753754760
740756741752747749745757755764
756764751759754745752755765762

По выборочным данным, представленным в заданиях №1-30, требуется:

1* Построить интервальный вариационный ряд распределения;

Построение интервального вариационного ряда распределения

Max: 769

Min: 733

R=769-733=36

H= R / 1+3,32 lg n=36/(1+3,32lg100)=4,712

A1= x min - h/2=730,644

B1=A1+h; B2=A2+h

2* Вычислить выборочные характеристики по вариационному ряду:

среднюю арифметическую (x ср.), центральные моменты (мю к, к=1,4), дисперсию (S^2), среднее квадратическое отклонение (S), коэффициенты асимметрии (Ас) и эксцесса (Ек), медиану (Ме), моду (Мо), коэффициент вариации(Vs);

Вычисление выборочных характеристик распределения

Di=(xi- xср)

xср =å xi mi/å mi

xср = 751,7539

Вспомогательная таблица ко второму пункту расчетов

Выборочный центральный момент К-го порядка равен

M k = ( xi - x)^k mi/ mi

В нашем примере:

Центр момент 10,00
Центр момент 263,94
Центр момент 3-2,85
Центр момент 412123,03

Выборочная дисперсия S^2 равна центральному моменту второго порядка:

В нашем примере:

S^2=63,94

Ввыборочное среднее квадратическое отклонение:

В нашем примере:

S= 7,996

Выборочные коэффициенты асимметрии Ас и эксцесса Fk по формулам

Ac = m3/ S^3;

В нашем примере:

Ас =-0,00557

Ek = m4/ S^4 -3;

В нашем примере:

Ek = -0,03442

Медиана Ме - значение признака x (e), приходящееся на середину ранжированного ряда наблюдений ( n = 2l -1). При четном числе наблюдений( n= 2l) медианой Ме является средняя арифметическая двух значений, расположенных в середине ранжированного ряда: Me=( x(e) + x( e+1) /2

Если исходить из интервального ряда, то медиану следует вычислять по ормуле

Me= a me +h * ( n/2 - mh( me-1) / m me

где mе- означает номер медианного интервала, ( mе -1) - интервала, редшествующего медианому.

В нашем примере:

Me=751,646

Мода Мо для совокупности наблюдений равна тому значению признака , которому соответствует наибольшая частота.

Для одномодального интервального ряда вычисление моды можно производить по формуле

Mo= a mo + h * ( m mo- m(mo-1))/2 m mo- m( mo-1) - m( mo+1)

где мо означает номер модального интервала ( интервала с наибольшей частотой), мо-1, мо+1- номера предшествующего модальному и следующего за ним интервалов.

В нашем примере:

Mo = 751,49476

Так как Хср, MoMe почти не отличаются друг от друга, есть основания предполагать теоретическое распределение нормальным.

Коэффициент вариации Vs = S/ x * 100 %= 3.06%

В нашем примере:

Vs= 1,06%

3* Построить гистограмму, полигон и кумуляту.

Графическое изображение вариационных рядов

Для визуального подбора теоретического распределения, а также выявления положения среднего значения (x ср.) и характера рассеивания (S^2 и S) вариационные ряды изображают графически.

Полигон и кумулята применяются для изображения как дискретных, так и интервальных рядов, гистограмма – для изображения только интервальных рядов. Для построения этих графиков запишем вариационные ряды распределения (интервальный и дискретный) относительных частот (частостей)

Wi=mi/n, накопленных относительных частот Whi и найдем отношение Wi/h, заполнив таблицу 1.4.

Интервалы xiWiWhiWi/h

Ai-bi

1 2 3 4 5

4,97-5,08 5,03 0,02 0.02 0,18

5,08-5,19 5,14 0,03 0,05 0,27

5,19-5,30 5,25 0.12 0,17 1,09

5,30-5,41 5,36 0,19 0,36 1,73

5,41-5,52 5,47 0,29 0,65 2,64

5,52-5,63 5,58 0,18 0,83 1,64

5,63-5,74 5,69 0,13 0,96 1,18

5,74-5,85 5,80 0,04 1,00 0,36

- 1,00 -

Для построения гистограммы относительных частот (частостей) на оси абсцисс откладываем частичные интервалы, на каждом из которых строим прямоугольник, площадь которого равна относительной частоте Wi данного i-го интервала. Тогда высота элементарного прямоугольника должна быть равна Wi/h,. Следовательно, позади под гистограммой равна сумме всех носительных частот, т.е. единице.

Из гистограммы можно получить полигон того же распределения. Если середины верхних оснований прямоугольников соединить отрезками прямой.

4* Сделать вывод о форме ряда распределения по виду гистограммы и полигона, а также по значениям коэффициентов Ас и Ек.

4 Анализ графиков и выводы

Гистограмма и полигон являются аппроксимациями кривой плотности (дифференциальной функции) теоретического распределения (генеральной совокупности). Поэтому по их виду можно судить о гипотическом законе распределения.

Для построения кумуляты дискретного ряда по оси абсцисс откладывают значения признака xi, а по оси ординат – накопленные относительные частоты Whi. Для интервального ряда по оси абсцисс откладывают интервалы .

С кумулятой сопоставляется график интегральной функции распределения F(x).

В нашем примере коэффициенты асимметрии и эксцесса не намного отличаются от нуля. Коэффициент асимметрии оказался отрицательным (Ас=-0,005), что свидетельствует о небольшой левосторонней асимметрии данного распределения. Эксцесс оказался также отрицательным (Ек= -0,034). Это говорит о том, что кривая, изображающая ряд распределения, по сравнению с нормальной, имеет несколько более плоскую вершину. Гистограмма и полигон напоминают кривую нормального распределения (рис.1.1 и 1.2.). Все это дает возможность выдвинуть гипотезу о том, что распределение продолжительности горения электролампочек является нормальным.

Примечание: Кумулята, гистронрамма и полигон находятся в приложениях к работе.

5* Рассчитать плотность и интегральную функцию теоретического нормального распределения и построить эти кривые на графиках гистограммы и кумуляты соответственно.

Расчет теоретической нормальной кривой распределения

Приведем один из способов расчета теоретического нормального распределения по двум найденным выборочным характеристикам x и S эмпирического ряда.

При расчете теоретических частот m^тi за оценку математического ожидания (мю) и среднего квадратического отклонения G нормального закона распределения принимают значения соответствующих выборочных характеристик x ср. и S, т.е. (мю)=Xср.= 751,7539; G=S=7,99.

Теоретические частоты находят по формуле: M^i=npi,

где n – объем; Pi – величина попадания значения нормально распределенной случайной величины в i-й интервал.

Вероятность Pi определяется по формуле

Pi=P(ai<x<=bi)=1/2[Ф(t2i)-Ф(t1i)],

Где Ф(t)=2 2(пи)=интегралу с границами от (0;t) е^x2/2dx - интегральная функция Лапласа – находится по таблице для

T2i=bi-x ср. S

T1i=ai-x ср.S

Таблицы Для вычисления вероятности нормальной кривой распределения

ИнтервалыMiT1T21/2Ф(T1)1/2Ф(T2)Pi
a(i)b(i)
730,644735,3562-2,640-2,0510,49580,4798-0,0080
735,356740,0688-2,051-1,4610,47980,4279-0,0260
740,068744,7806-1,461-0,8720,42790,3078-0,0601
744,780749,49218-0,872-0,2830,30781,11030,4013
749,492754,20435-0,2830,3060,03000,66190,3160
754,204758,916120,3060,8960,11790,31330,0977
758,916763,628110,8961,4850,31330,43060,0587
763,628768,34061,4852,0740,43060,48080,0251
768,340773,05222,0742,6640,48080,49600,0076
Pi*nMi(теор)Mi(теор)/hMi(теор)накоп
-0,800010,0020,0080
-2,595030,0060,0340
-6,005060,0130,0940
40,1250400,0850,4953
31,5950320,0680,8153
9,7700100,0210,9130
5,865060,0120,9716
2,510030,0050,9967
0,760010,0021,0000
100

Сравнение гистограммы и нормальной кривой наглядно показывает согласованность между теоретическим и эмпирическим распределением.

Примечание: Построенные графики находятся в приложениях к работе.

6* Проверить гипотезу о нормальном законе распределения по критерию согласи яПирсона f^2).

Проверка гипотез о нормальном законе распределения

Частоты для проверки соответствия эмпирического ряда распределения нормальному закону используют критерий X^2, основанный на сравнении эмпирических частот mi с теоретическими m^тi, которые можно ожидать при принятии определенной нулевой гипотезы.

Значение X^2набл. – наблюдаемое значение критерия, полученное по результатам наблюдений, равно

к

F^2набл.= (mi-m^тi)

I=1 m^i

Где к – число интервалов (после объединения). M^i – теоретические частоты. Все вспомогательные расчеты, необходимые для вычисления f^2, сведем в таблицу 1.6.

Таблица 1.6.

Вычисление критерия X^2 при проверке нормальности продолжительности горения электролампочек

ИнтервалыMi(Практ)Mi(теор)(Mi-Mi(теор))^2…../Mi(теор)
a(i)b(i)
730,644735,3562291,29
735,356740,06885
740,068744,780613493,88
744,780749,492182190,43
749,492754,20435251004,01
754,204758,9161221813,89
758,916763,628111210,08
763,628768,3406510,14
768,340773,05222
X^2набл13,71

Правило проверки гипотезы заключается в следующем. Определяем по таблице распределения xu-квадрат критическое значение X^2кр.(альфа для числа степеной свободы V=к-3 и заданного уровня значимости альфа. Затем сравниваем X^2кр.

Если X^2 набл.<=X^2кр. , то выдвинутая гипотеза о законе распределения не отвергается (не противоречит опытным данным).

Если X^2 набл. >X^2кр. , то выдвинутая гипотеза о нормальном законе распределения отвергается с вероятностью ошибки a.

Для нашего примера X^2набл.=13,71, a=0,005, V=7-3=4 (число интервалов после объединения стало равным 7) и X^2кр. (0,005; 4) =14,9

Так как X^2набл.<X^2кр., то согласно критерию Пирсона гипотеза о нормальном законе не отвергается с вероятностью ошибки 0,005. Можно сделать вывод, что распределение продолжительности горения электролампочек является нормальным. Что подтверждают графики и значения моды и медианы.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно