Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Уменьшение оценки взаимной спектральной плотности стационарного случайного процесса

Тип Реферат
Предмет Математика
Просмотров
659
Размер файла
557 б
Поделиться

Ознакомительный фрагмент работы:

Уменьшение оценки взаимной спектральной плотности стационарного случайного процесса

Математический факультет

Кафедра информатики и прикладной математики

КУРСОВАЯ РАБОТА НА ТЕМУ:

«УМЕНЬШЕНИЕ ОЦЕНКИ ВЗАИМНОЙ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ СТАЦИОНАРНОГО СЛУЧАЙНОГО ПРОЦЕССА»

Брест 2009


СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ, ИСПОЛЬЗУЕМЫЕ В РАБОТЕ

2. УМЕНЬШЕНИЕ СМЕЩЕНИЯ ОЦЕНКИ ВЗАИМНОЙ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ

3. ОКНА ПРОСМОТРА ДАННЫХ

ЗАКЛЮЧЕНИЕ

СПИСОКИСПОЛЬЗОВАННЫХИСТОЧНИКОВ

ПРИЛОЖЕНИЕ


ВВЕДЕНИЕ

Почти в каждой области встречаются явления, которые интересно и важно изучать в их развитии и изменении во времени. В повседневной жизни могут представлять интерес, например, метеорологические условия, цены на тот или иной товар, те или иные характеристики состояния здоровья индивидуума и т.п. Все они изменяются во времени. Совокупность измерений какой-либо одной характеристики подобного рода и представляет собой временной ряд.

Одной из главных задач спектрального анализа временных рядов является построение и исследование оценок спектральных плотностей стационарных случайных процессов, так как они дают важную информацию о структуре процесса.

Методы анализа временных рядов широко используются в различных областях науки и техники, их можно применять при анализе больших объемов данных, получаемых в процессе вибрационных испытаний или извлекаемых из сводок экономических данных.

В данной работе исследована оценка спектральной плотности, построенная с использованием различных окон просмотра данных. Построены графики этой оценки для временного ряда, представляющего собой последовательность наблюдений - температуры воздуха в городе Бресте с октября 2008 по февраль 2009 года.

Графики построены также для центрированного случайного процесса.


1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ, ИСПОЛЬЗУЕМЫЕ В РАБОТЕ

Векторным временным рядом (r-мерным временным рядом) называется совокупность функций вида

.

Переменная t обычно соответствует времени выполнения или регистрации наблюдений и измерений.

Действительным случайным процессом = называется семейство случайных величин, заданных на вероятностном пространстве , где , , - некоторое параметрическое множество.

Если , или - подмножество из , то говорят, что , - случайный процесс с дискретным временем.

Если , или подмножество из , то говорят, что , - случайный процесс с непрерывным временем.

Введем характеристики случайного процесса , , во временной области.

Математическим ожиданием случайного процесса , , называется функция вида

,

где .

Дисперсией случайного процесса , , называется функция вида


,

где .

Спектральной плотностью случайного процесса , , называется функция вида

=,

,

при условии, что

.

Нормированной спектральной плотностью случайного процесса называется функция вида

где , если и , если .

Из определения видно, что спектральная плотность непрерывная, периодическая функция с периодом, равным по каждому из аргументов.

Ковариационной функцией случайного процесса , , называется функция вида


.

Смешанным моментом го порядка, , случайного процесса , , называется функция вида

, , .

Заметим, что

,

.

Лемма 1.1. Для любого целого р справедливо следующее соотношение

.

Доказательство. Если , то доказательство очевидно. Рассмотрим случай . Воспользуемся формулой Эйлера

тогда


Лемма доказана.

Пусть - значения случайного процесса в точках . Введем функцию

,

которую будем называть характеристической функцией, где - ненулевой действительный вектор, , .

Смешанный момент го порядка, , можно также определить как

, , .

Смешанным семиинвариантом (кумулянтом) го порядка, , случайного процесса , , называется функция вида

, , ,

которую также будем обозначать как .

Между смешанными моментами и смешанными семиинвариантами го порядка, , существуют связывающие их соотношения, которые имеют вид


,

,

где суммирование производится по всевозможным разбиениям множества

, , , , .

При

,

,

.

При

Спектральной плотностью случайного процесса , , называется функция вида


=, ,

при условии, что

Из определения видно, что спектральная плотность непрерывная, периодическая функция с периодом, равным по каждому из аргументов.

Семиинвариантной спектральной плотностью го порядка,, случайного процесса , , называется функция вида

=, ,

при условии, что

.

Теорема 1. Для смешанного семиинварианта го порядка, , случайного процесса справедливы представления

,.


Пусть - случайный процесс, заданный на вероятностном пространстве , и

- мерная функция распределения, где

Случайный процесс называется стационарным в узком смысле (строго стационарным), если для любого натурального , любых и любого , такого что выполняется соотношение

где

Возьмем произвольное . Пусть , тогда

В дальнейшем функцию, в правой части (1), будем обозначать

Используя определение стационарного в узком смысле СП , смешанный момент го порядка, , будем обозначать

Смешанный семиинвариант го порядка, , стационарного в узком смысле СП будем обозначать


Случайный процесс , называется стационарным в широком смысле, если и

Замечание 1. Если , является стационарным в узком смысле СП и то , является стационарным в широком смысле, но не наоборот.

Спектральной плотностью стационарного случайного процесса , называется функция вида

,

при условии, что

Семиинвариантной спектральной плотностью - го порядка, , стационарного СП , называется функция вида


при условии, что

Для смешанного семиинварианта -го порядка, , стационарного СП справедливо следующее соотношение

.

Для эти соотношения примут вид

.

2. УМЕНЬШЕНИЕ СМЕЩЕНИЯ ОЦЕНКИ ВЗАИМНОЙ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ

Рассмотрим действительный стационарный в широком смысле случайный процесс,, с математическим ожиданием , , взаимной ковариационной функцией , и взаимной спектральной плотностью .

Предположим, имеются Т последовательных, полученных через равные промежутки времени наблюдений за составляющей , рассматриваемого процесса . Как оценку взаимной спектральной плотности в точке рассмотрим статистику

(2.1)

где , - произвольная, не зависящая от наблюдений четная целочисленная функция, для , а

(2.2)

s – целое число, - целая часть числа .

Статистика , называемая выборочной взаимной спектральной плотностью или периодограммой, задается соотношением

(2.3)

определено равенством (2.2).

Предположим, если оценка взаимной спектральной плотности , построенная по T наблюдениям, является асимптотически несмещенной, то математическое ожидание ее можно представить в виде


(2.4)

где некоторые действительные функции, не зависящие от T,

В качестве оценки взаимной спектральной плотности возьмем статистику

,

и исследуем первый момент построенной оценки.

Математическое ожидание построенной оценки будет следующее

Использовав соотношение (2.4), получим

где

Поскольку


следовательно, оценка является асимптотически несмещенной со смещением, убывающим как .

Так как равенство (2.4) справедливо и при , то, рассматривая оценку

где

, то оценка является асимптотически несмещенной со смещением, убывающим на . Далее рассмотрим оценку

(2.5)

Найдем математическое ожидание построенной оценки :


где

Следовательно, оценка является асимптотически несмещенной со смещением, убывающим как .

Найдем явный вид коэффициентов в представлении (2.4),

Видим, что

Таким образом, справедливо следующее утверждение.

Теорема 2.1. Оценка взаимной спектральной плотности стационарного в широком смысле случайного процесса , задаваемая равенством (2.5), удовлетворяет соотношению

,

,

при условии, что справедливо соотношение (2.4) для

При нахождении моментов оценок спектральных плотностей вторых и высших порядков появляются функции вида

(2.6)

где задаются соотношением


3. ОКНА ПРОСМОТРА ДАННЫХ

Чтобы выделить определенные характеристики спектральных оценок, нередко прибегают к сглаживанию значений на концах случайного временного ряда. Временное сглаживание представляет собой умножение ряда на «окно данных».

В соотношении (2.3) введена функция , называемая окном просмотра данных (множителем сходимости, коэффициентом сглаживания).

Функцию

(3.1)

называют частотным окном. Из соотношения (3.1) вытекает, что

Характерное поведение функции состоит в том, что она становится все более сконцентрированной в окрестности нуля при .

Примеры окон просмотра данных:

1. 1 – окно Дирихле;

2. 1- – окно Фейера;

3. ;

4. – окно Хэннинга;

5. – окно Хэмминга;

6. – окно Хэмминга;

7. , где – окно Хэмминга;

8. 1- – окно Рисса.


ЗАКЛЮЧЕНИЕ

В данной работе исследована оценка спектральной плотности вида

где , а периодограмма задана следующим соотношением

Построены графики этой оценки для различных окон данных на основании данных, представляющих собой последовательность наблюдений - температуры воздуха в городе Бресте с октября 2008 по февраль 2009 года.

Графики построены также для центрированного случайного процесса.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Андерсон Т. Статистический анализ временных рядов. – М.: Мир, 1976. – 755 с.

2. Бриллинджер Д. Временные ряды. Обработка данных и теория. - М.: Мир, 1980. - 536 с.

3. Журбенко И.Г. Спектральный анализ временных рядов. - М.: Изд-во МГУ, 1982. - 168 с.

4. Труш Н.Н. Асимптотические методы статистического анализа временных рядов. – Мн.: БГУ, 1999. - 218 с.

5. Труш Н.Н., Мирская Е.И. Случайные процессы. Преобразования Фурье наблюдений. – Мн.: БГУ, 2000.


ПРИЛОЖЕНИЕ

Для исследования оценки (3.1) был исследован ряд, состоящий из 176 наблюдений ежедневной температуры воздуха в городе Бресте с октября 2008 по февраль 2009 года.

Рис. 1 - График оценки спектральной плотности (2.1) для окна Дирихле

Рис. 2 - График оценки спектральной плотности (2.1) для окна Дирихле для центрированного случайного процесса


Рис. 3 - График оценки спектральной плотности (2.1) для окна Фейера

Рис. 4 - График оценки спектральной плотности (2.1) для окна Фейера для центрированного случайного процесса

Рис. 5 - График оценки спектральной плотности (2.1) для окна вида 3


Рис. 6 - График оценки спектральной плотности (2.1) для окна вида 3 для центрированного случайного процесса

Рис. 7 - График оценки спектральной плотности (2.1) для окна Хэннинга

Рис. 8 - График оценки спектральной плотности (2.1) для окна Хэннинга для центрированного случайного процесса


Рис. 9 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 5

Рис. 10 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 5 для центрированного случайного процесса

Рис. 11 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 6


Рис. 12 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 6 для центрированного случайного процесса

Рис. 13 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 7

Рис. 14 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 7 для центрированного случайного процесса


Рис. 15 - График оценки спектральной плотности (2.1) для окна Рисса

Рис. 16 - График оценки спектральной плотности (2.1) для окна Рисса для центрированного случайного процесса


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно