Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Расчет стального газопровода

Тип Реферат
Предмет Промышленность и производство
Просмотров
1055
Размер файла
106 б
Поделиться

Ознакомительный фрагмент работы:

Расчет стального газопровода

Введение

Гидравлика, или механика жидкостей, рассматривает законы равновесия и движения жидкости и применение этих законов к решению практических задач. Аэромеханика рассматривает аналогичные вопросы применительно к газам. Механика жидкостей и газов имеют много общего и часто рассматриваются как единая дисциплина, чаще всего называемая гидромеханикой.

Согласно молекулярно-кинетической теории строении вещества, капельные и газообразные жидкости существенно отличаются друг от друга характером движения частиц, их расположением и силами взаимодействия между молекулами. Различия находят выражение и в механических свойствах этих сред. Главным отличием жидкостей от газов является отношение их к сжатию. У жидкостей расстояние между молекулами очень малы, а у газов это расстояние на три порядка больше и поэтому газ считается легко сжимаемой жидкостью , а следовательно жидкость несжимаемой жидкостью.

Для металлурга – автоматчика важность данной дисциплины обусловлена особенностями металлургического производства, а именно подачей и отводом газов, воды, кислот и других жидкостей, но самое важное заключается в том, что управление потоками является одним из удобных методов регулирования производственного процесса.

Благодаря применению электронных вычислительных машин, существенно улучшилось проектирование трубопроводов. Использование такой техники повлияло на конструктивные решения, так как позволило осуществлять сложные схемы с подвижными узлами, применения которых избегали из-за трудностей их расчёта


1. Постановка задачи

Требуется спроектировать схему газопровода и построить характеристику трубопровода.

При этом заданы газ-метан, расход метена – 2,5 кГ/с, давление метана на выходе из газопровода – 2,5 ат.


2. Краткие теоретические сведения

Металлургические предприятия являются одними из крупнейших потребителей воды и воздуха. Потребление воздуха, как воды, на заводах цветной металлургии может носить характер общего (потребление сжатого воздуха), присущего большинству промышленных предприятий, и специфического (использования воздуха как технологического реагента – окислителя), свойственного металлургическому производству.

В отличие от водоснабжения, снабжение потребителей на промышленных предприятиях воздухом, как правило, в значительной мере осуществляется от локальных воздухоподающих установок и станций. Общая централизованная система воздухоснабжения применяется только для воздуха некоторых отдельных параметров, в первую очередь компрессорного воздуха. Обычно промышленное предприятие оборудовано одной или несколькими компрессорными станциями, которые обеспечивают всех потребителей сжатого воздуха давлением 4-7 ати. Воздух других параметров подается потребителям от местных установок. Транспортировка воздуха от воздухоподающих станций осуществляется с помощью большого количества длинных и разветвленных трубопроводов разного диаметра.

Но передача воздуха на большие расстояния по трубопроводам очень невыгодна. Во – первых стоимость всей этой системы была бы очень велика. Во-вторых, транспортировка больших масс воздуха на большие расстояния вызвала бы большие потери напора и, следовательно, потребовала бы установки высоконапорных и дорогих машин и большего перерасхода энергии. В-третьих, регулировка расхода или давления воздуха данных параметров, учитывая небольшое число крупных потребителей этого воздуха.

С компрессорным воздухом давлением 4-7 ати дело обстоит иначе. Он является фактически воздухом общего назначения. Во всех цехах предприятия всегда имеется значительное количество преимущественно мелких потребителей этого воздуха. Поскольку общий расход компрессорного воздуха небольшой, транспортировка его по трубопроводам на значительные расстояния не вызывает большого увеличения затрат. Причем благодаря высокому давлению действительный объем транспортируемого сжатого воздуха мал, что позволяет иметь трубопроводы небольшого диаметра.

На ряду с общезаводской схемой воздухоснабжения компрессорным воздухом на предприятиях часто применяются более локальные схемы, охватывающие в целом цехи или группу цехов.


3. Порядок выполнения расчётов

Модель расчета и описание характеристик движения газа:

3.1Схема установки стального газопровода:

3.2Расчет потерь напора на трение

Потери напора на трение в круглых напорных газопроводах обычно рассчитываются по формуле Дарси – Вейсбаха

(3.1)

где - длина газопровода; d – его диаметр; - коэффициент гидравлического трения, или коэффициент трения, определяемый рядом условий, в первую очередь режимом движения жидкости.

Расход жидкости при заданном скорости движения находится по формуле:

(3.2)

где F– площадь поперечного сечения газопровода , а - объёмный расход жидкости ([]=м3/с).

1)Для перевода расхода Q из технической системы в систему СИ потребуется определить плотность при нормальных условиях ,а так же плотность при заданной температуре,для этого используем формулы (3.3) и (3.4):

(3.3)

(3.4)

2)Определение диаметра газопровода, формула для получения которого (3.6) выведена из скорости газопровода(3.2) и его площади(3.5):

(3.5)

(3.6)

3)Перерасчет скорости газа по полученному диаметру. По схеме газопровода видно, что он состоит из трех участков, причем скорости второго и третьего участков равны, так же расход первого участка делится поровну между двумя последующими:

(3.7)

(3.8)

4)Определение динамической вязкости для заданной температуры:

(3.9)

5)Определение кинематической вязкости:

(3.10)

6) Теперь можно определить режим движения жидкости. Количественной мерой режима движения жидкости является так называемое число Рейнольдса . Его численное значение зависит от соотношения трёх величин: расхода или средней скорости потока W, его поперечных размеров, в частности диаметра d (если рассматривается круглый газопровод), и вязкости жидкости :

(3.11)

Число является безразмерной величиной, в этом можно убедиться, подставив в выражение (3.11) размерности величин:

Границей перехода из одного режима в другой считается значение =2320, его называют критическим режимом. При режим движения ламинарный, при - турбулентный режим.

В промышленных газопроводах несжимаемые жидкости и газы в большинстве случаев движутся в турбулентном режиме (при тех скоростях, которые обычно приняты в этих газопроводах). Лишь в редких случаях приходится иметь дело с чисто ламинарным режимом.

7) Число Re определяет так же величину ламинарного подслоя в турбулентном потоке. С увеличением Re толщина подслоя уменьшается. Зависимость между Re и ориентировочно описывается следующей формулой

(3.12)

Влияние ламинарного подслоя зависит от соотношения между его толщиной и характеристиками шероховатости стенки. Когда много больше средней величины выступов шероховатости, частицы жидкости ядра потока не соприкасаются со стенкой. Такие трубы носят название гидравлически гладких. Если меньше абсолютной шероховатости, то частицы, обладающие высокой скоростью, непосредственно соприкасаются с выступами. Такие трубы называют гидравлически шероховатыми.

3.3 Расчёт местных потерь напора

Помимо потерь напора на трение, которые имеют место по всей длине трубопровода, при движении жидкостей и газов возникают потери напора в местах локальных возмущений потока, вызванных разного рода изменениями в направлении движения жидкости, изменениями сечения, наличием преград на пути движения и т.д.. Эти потери носят название местных потерь напора, а причины, их вызывающие, называются местными сопротивлениями.

Практически величина местных потерь прямо пропорциональна динамическому напору в данном сечении потока:

(3.13)

где - коэффициент местного сопротивления, характеризующий данное сопротивление.

Важная особенность состоит в том, что для геометрических подобных и одинаково расположенных относительно потока местных сопротивлений при не слишком малых значениях числа значения одинаковы. Поэтому, установив опытным путём значение для некоторого местного сопротивления, можно полученную величину использовать затем для расчёта на всех геометрически подобных местных сопротивлениях. Кроме этого можно пользоваться следующей формулой:

(3.14)

8) Общие потери напора в газопроводе, включая потери на трение и местные потери, находят суммированием:

(3.15)


где - сумма потерь напора на всех местных сопротивлениях на данном газопроводе; - суммарный коэффициент местных сопротивлений.

9). Коэффициент трения определяется:

Для гидравлически гладких труб формулами соответственно Блазиуса и Никурадзе:

(3.16)

(3.17)

причём первая даёт хорошие результаты при , вторая при .

Для гидравлически шероховатых труб формулами соответственно Шифринсона и Никурадзе:

(3.18)

(3.19)

Состояние стенки оценивается величиной эквивалентной шероховатости , под которым понимают такую высоту выступов шероховатости, образованной песчинками одинакового размера, которая даёт ту же величину , что и интересующая нас стенка.

10)Составляем уравнение Бернулли для газового потока и из уравнения потребуется найти p2:

(3.20)

Для определения удельного веса воспользуемся формулой:

(3.21)

3.4 Построение характеристики сети

Для газопроводов, состоящих из часто употребляемых стандартных труб, расчёт потерь напора удобно вести с помощью обобщённых параметров газопровода. Рассмотрим простой короткий газопровод постоянного диаметра. Общие потери напора в нём, определяемые формулой (3.15), можно выразить через расход жидкости :

Сделаем замену в этом выражении:

(3.23)

где b – сопротивление газопровода.

Из выражений (3.22) и (3.23) получаем:

(3.24)

Из этого выражения видно, что для данного газопровода зависимость потерь от расхода графически выражается параболой.

При последовательном соединении газопроводов разного диаметра общие потери напора соединения равны сумме потерь в отдельных газопроводах, расход же жидкости по всей длине соединения одинаков и равен расходу в отдельном газопроводе:

(3.25)

где - сопротивление всего соединения.

Расходы жидкости в отдельных ветвях параллельного соединения различны и определяются сопротивлением ветвей. Общий расход в соединении равен сумме расходов ветвей. В этом случае из выражения (3.24) получаем:

(3.26)

Рассмотрим общий случай: газопровод, в котором по пути движения жидкость совершает работу или над ней совершается работа. Полный напор жидкости в начальном и конечном сечениях газопровода соответственно

;

а приращение полного напора в газопроводе

(3.27)

где - геометрическая высота подачи жидкости.

Выражение для удельной энергии Н, которую надо затратить на приращение полного напора жидкости в газопроводе и преодоление в нём потерь напора, носит название уравнения сети, а величина Н – полный потребный напор газопровода.

(3.28)

Преобразуем это выражение, введя обозначение

(3.29)

(3.30)

Учитывая выражение получим:

(3.31)

где а, b и с константы для данной сети.

Выражение (3.31) является уравнением напорной характеристики газопровода. Оно устанавливает связь между потребным напором и расходом жидкости в сети.Для заданно случая не учитывается , из этого следует:

(3.32)

К тому же, так как диаметр газопровода постоянный с=0.


4. Исходные данные

Для проведения расчётов необходимо сконструировать газопровод на основании следующих данных:

· Расход метана 2,5 кГ/с;

· давление метана на выходе из газопровода 2,5 ат;

Материал газопровода –сталь.

Так же для выполнения всех необходимых расчетов и вычислений потребуется задаться некоторыми величинами, а некоторые взять из технической литературы.

1) Величины, которыми требуется задаться:

Скорость газа: W=15 м/с;

Температура окружающей среды: t=200C=293 К;

Газ, идущий по газопроводу- метан(CH4)

2)Табличные величины:

Молярная масса метана: М(CH4)=16г/моль=;

Молярный объем при нормальных условиях:

Vm(CH4)=22.4л/моль=м3/моль;

Атмосферное давление: p0=;

Динамическая вязкость при нормальных условиях: ;

Абсолютная шероховатость: ;

Эквивалентная шероховатость (для умеренно заржавевших сварных стальных труб): Кэ=;

Ускорение свободного падения g=9.81м/с2;

Коэффициенты местных сопротивлений:

а)для прямоточных вентилей при диаметре (d=0,363м):

б)для тройника:

в)для колена(угол 900):

Используемые в расчетах табличные величины взяты из:

1). А.А. Гальнбек «Водовоздушное хозяйство металлургических заводов» (с. 273-278);

2). О. Флореа, О. Смигельский «Расчеты по процессам и аппаратам химической технологи» (с. 420-444);

3). Л. В. Арнольд, Г. А. Михайловский, В. М. Селивериев «Техническая термодинамика и теплопередача» (с. 342)


5. Результаты расчётов и их анализ

5.1 Расчет потерь напора на трение

1) Для перевода расхода в систему СИ необходимо найти плотность при заданной температуреопределяемой по формуле (3.4), но для этого нужно вычислить давление при нормальных условиях вычисляемой по формуле (3.3):

;

;

2). Переводим расход Q из технической системы в систему СИ:

;

3). Определение диаметра газопровода по формуле (3,6):

4) Перерасчет скорости газа по полученному диаметру. Формулы (3.7),(3.8):


W2=W3

5) Определение динамической вязкости для заданной температуры (3.9):

;

6) Определение кинематической вязкости (3.10):

;

7) Определение числа Reдля каждого участка газопровода (3.11):

;

;

Re2=Re3

Сравнив полученные значения со значением Re=2300, делаем вывод что наш режим движения в газопроводе турбулентный на всех участках.

8) Определяем толщину ламинарного подслоя, для каждого участка (3,12):

;

;

Сравнив полученные значения с величиной абсолютной шероховатостиотсюда делаем вывод, что газопровод составлен из гидравлически шероховатых труб.

9)Так как трубы гидравлические шероховатые ,то для определения коэффициента трения используем формулу Никурадзе(3,19):

;

10) Теперь рассчитываем потери напора на трение по формуле (3.1):

5.2 Расчёт местных потерь напора

1) Расчет местных потерь напора определяется по формуле (3.13):


2) Определение общих потерь напора в газопроводе находим по формуле (3.15), которая состоит из суммы потерь напора на трение и местных потерь:

;

;

Учитывая, что потери напора на втором и третьем участках равны:

;

3) Из уравнения Бернулли(3.20), найдем p2:

Удельный вес найдем по формуле (3.21), в нашем случае .

;

p2=;

5.3 Построение характеристики сети

1) По формуле (3.32) находим постоянную величину а:

;

2). Далее определяем сопротивление газопровода b , для каждого участка, используем формулу (3.23):

;

;

3). По формуле (3.26) находим сопротивление для параллельного соединения газопроводов (участок 2-3):

4). Определяем общее сопротивление газопровода:

b=b1+b2-3 =29,49+1,91=31,4

5). Характеристику сети строим по полученному уравнению и в соответствии с заданным значением расхода газопровода (приложение 2):


Заключение

На примере данного газопровода мы ознакомились с основными навыками теоретического применения законов гидроаэромеханики для оценки параметров сети. В результате такого исследования можно практически точно создать на практике условия наиболее выгодные в экономическом и техническом плане, что позволяет снизить затраты на конструирование газопровода с достижением наибольшей его производительности.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно