Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Кривые второго порядка

Тип Реферат
Предмет Математика
Просмотров
1378
Размер файла
100 б
Поделиться

Ознакомительный фрагмент работы:

Кривые второго порядка

Содержание

Введение

1.Кривые второго порядка

1.1 Эллипс

1.2 Гипербола

1.3 Парабола

2.Теоремы, связанные с кривыми второго порядка

Литература


Введение

Впервые кривые второго порядка изучались одним из учеников Платона. Его работа заключалась в следующем: если взять две пересекающиеся прямые и вращать их вокруг биссектрисы угла, ими образованного, то получится конусная поверхность. Если же пересечь эту поверхность плоскостью, то в сечении получаются различные геометрические фигуры, а именно эллипс, окружность, парабола, гипербола и несколько вырожденных фигур.

Однако эти научные знания нашли применение лишь в XVII, когда стало известно, что планеты движутся по эллиптическим траекториям, а пушечный снаряд летит по параболической. Ещё позже стало известно, что если придать телу первую космическую скорость, то оно будет двигаться по окружности вокруг Земли, при увеличении этой скорости — по эллипсу, а по достижении второй космической скорости тело по параболе покинет поле притяжения Земли.


1. Кривые второго порядка

Кривой 2-го порядка называется линия на плоскости, которая в некоторой декартовой системе координат определяется уравнением

ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0

где a, b, c, d, e, f — вещественные коэффициенты, причем a2 + b2 + c2 ≠ 0 .

Вид кривой зависит от четырёх инвариантов:

инварианты относительно поворота и сдвига системы координат:

инвариант относительно поворота системы координат (полуинвариант):

Многие важные свойства кривых второго порядка могут быть изучены при помощи характеристической квадратичной формы, соответствующей уравнению кривой:


Так, например, невырожденная кривая оказывается вещественным эллипсом, мнимым эллипсом, гиперболой или параболой в зависимости от того, будет ли положительно определённой, отрицательно определённой, неопределённой или полуопределённой квадратичной формой, что устанавливается по корням характеристического уравнения:

Или

λ2 − Iλ + D = 0.

Корни этого уравнения являются собственными значениями вещественной симметричной матрицы и, как следствие этого, всегда вещественны:

Кривые второго порядка классифицируются на невырожденные кривые и вырожденные.

Доказано, что кривая 2–го порядка, определяемая этим уравнением принадлежит к одному из следующих типов: эллипс, гипербола, парабола, пара прямых (пересекающихся, параллельных или совпадающих), точка, пустое множество.

Иными словами, для каждой кривой 2-го порядка (для каждого уравнения) существует такая система координат, в которой уравнение кривой имеет вид:


1.1 Эллипс

Эллипсом называется геометрическое место точек плоскости, для которых сумма расстояний до двух фиксированных точек плоскости, называемых фокусами эллипса, есть величина постоянная. Отрезки, соединяющие точку эллипса с фокусами, называются фокальными радиусами точки.

Если эллипс описывается каноническим уравнением

где a > 0 , b > 0, a > b > 0 — большая и малая полуоси эллипса, то фокусы эллипса расположены симметрично на оси абсцисс и имеют координаты (−c, 0) и ( c, 0), где

Величина e = c/a называется эксцентриситетом эллипса.


По определению эллипса r1 + r2 = 2a, r1 и r2 − фокальные радиусы, их длины вычисляются по формулам

Если фокусы эллипса совпадают, то эллипс является окружностью.

1.2 Гипербола

Гиперболой называется кривая второго порядка, которая в некоторой декартовой системе координат описывается уравнением

где a > 0, b > 0 — параметры гиперболы.

Это уравнение называется каноническим уравнением гиперболы, а система координат, в которой гипербола описывается каноническим уравнением, называется канонической.

В канонической системе оси координат являются осями симметрии гиперболы, а начало координат — ее центром симметрии.

Точки пересечения гиперболы с осью OX ( ± a, 0) называются вершинами гиперболы.

С осью OY гипербола не пересекается.

Отрезки a и b называются полуосями гиперболы.

Рис.1

Прямые ay − bx = 0 и ay + bx = 0 — асимптоты гиперболы, при удалении точки гиперблы в бесконечность, соответствующая ветвь гиперболы приближается к одной из асимптот.

Уравнение описывает гиперболу, вершины которой лежат на оси OY в точках (0, ± b).


Рис.2

Такая гипербола называется сопряженной к гиперболе её асимптоты — те прямые ay − bx = 0 и ay + bx = 0. Говорят о паре сопряжённых гипербол.

1.3 Парабола

Параболой называется кривая второго порядка, которая в некоторой декартовой системе координат описывается уравнением

y2 = 2 px

где p > 0 — параметр параболы.

Такое уравнение называется каноническим уравнением параболы, а система координат, в которой парабола описывается каноническим уравнением, называется канонической.

В канонической системе ось абсцисс является осью симметрии параболы, а начало координат — её вершиной.


Рис.3

Уравнения y2 = −2 px, x2 = 2 py, и x2 = −2 py, p > 0, в той же самой канонической системе координат также описывают параболы:


2. Теоремы, связанные с кривыми второго порядка

Теоремма Паскамля — теорема проективной геометрии, которая гласит, что:

Если шестиугольник вписан в окружность либо любое другое коническое сечение (эллипс, параболу, гиперболу, даже пару прямых), то точки пересечения трёх пар противоположных сторон лежат на одной прямой.Теорема Паскаля двойственна к теореме Брианшона.

Теорема Брианшона является классической теоремой проективной геометрии. Она сформулируется следующим образом:

Если шестиугольник описан около конического сечения, то три диагонали, соединяющие противоположные вершины этого шестиугольника, проходят через одну точку.

В частности, в вырожденном случае:

Если стороны шестиугольника проходят поочерёдно через две данные точки, то три диагонали, соединяющие его противоположные вершины, проходят через одну точку.

Теорема Брианшона двойственна к теореме Паскаля, а её вырожденный случай двойственен к теореме Паппа.


Литература

1. Корн Г., Корн Т. Кривые второго порядка (конические сечения) // Справочник по математике. — 4-е издание. — М: Наука, 1978. — С. 64-69.

2. Корн Г., Корн Т. 2.4-5. Характеристическая квадратичная форма и характеристическое уравнение // Справочник по математике. — 4-е издание. — М: Наука, 1978. — С. 64.

3. В.А. Ильин, Э.Г. Позняк. Аналитическая геометрия, гл. 6. М.: "Наука", 1988.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 096 оценок star star star star star
среднее 4.9 из 5
РАНХиГС
Срок был очень сжатый, но Анна справилась даже раньше. Спасибо огромное!
star star star star star
СПБГТИ
Спасибо большое Маргарите. Очень отзывчивая девушка, на все замечания реагирует молниеносно)
star star star star star
СПбУТУиЭ
Спасибо огромное! Работу нужно было сдать срочно, максимум на следующий день. Ольга выполн...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Отношение гос органов власти к физической культуре (Волгоградская...

Статья, Физическая культура

Срок сдачи к 25 дек.

1 минуту назад

Есть файл с готовой курсовой но ее нужно корректировать

Курсовая, Техническое обслуживание и ремонт автомобилей

Срок сдачи к 25 дек.

1 минуту назад

Разработать структуру цифрового продукта.

Контрольная, Менеджмент организации

Срок сдачи к 23 янв.

3 минуты назад

Нужно подправить программу исследования ВКР

Другое, Дизайн психологического исследования

Срок сдачи к 25 дек.

4 минуты назад

«Кластерный анализ: иерархические методы кластеризации и метод к-средних»

Лабораторная, Статистическое моделирование и прогнозирование, статистика

Срок сдачи к 31 дек.

7 минут назад

Необходимы выполнить задание как в примере файл оиуз ...

Контрольная, Теория организации и управление изменениями

Срок сдачи к 26 дек.

8 минут назад

тмм

Контрольная, ТММ

Срок сдачи к 28 дек.

8 минут назад

Решить задачу

Решение задач, Материаловедение

Срок сдачи к 26 дек.

9 минут назад

надо сделать только задачи, все 5 штук, титульник сама оформлю

Контрольная, Основы математической обработки информации, математика

Срок сдачи к 30 дек.

10 минут назад

Решить контрольную из 5 задач по элтеху

Контрольная, Электротехника и электроника

Срок сдачи к 26 дек.

11 минут назад

решить 8 задач

Решение задач, Философия

Срок сдачи к 31 дек.

11 минут назад

Лабораторная работа

Онлайн-помощь, Информатика

Срок сдачи к 25 дек.

11 минут назад

зеленая поветска

Контрольная, Экология

Срок сдачи к 26 дек.

11 минут назад

Написать небольшой реферат

Реферат, Биохимия

Срок сдачи к 25 дек.

11 минут назад

Написать курсовую работу

Курсовая, Геология

Срок сдачи к 31 дек.

11 минут назад

Сделать презентацию на ~10-15 слайдов и написать к ней спич

Презентация, Информационная безопасность

Срок сдачи к 25 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно