Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Основные задачи вычислительной математики

Тип Реферат
Предмет Математика
Просмотров
1759
Размер файла
89 б
Поделиться

Ознакомительный фрагмент работы:

Основные задачи вычислительной математики

Основные задачи вычислительной математики. Теория погрешностей. Приближённое вычисление значений функций заданных аналитически. Оценка погрешности вычислений.


Работа современного инженера, физика и любого другого исследователя связана с моделированием сложных процессов, происходящих в разных областях знаний и деятельности человека. Зачастую, моделирование является средним звеном в разработке проекта и его внедрения в производство. Процесс проектирования можно представить схематически: (рис 1).


рис 1.

Для исследования свойств построенной математической модели, в большинстве случаев, не удаётся аналитически решить задачу. Поэтому, вступают в силу методы вычислительной математики, которые позволяют решение каждой задачи довести до числового результата и оценить точность производимых вычислений.

При работе с приближёнными величинами приходится решать следующие задачи:

а) давать математические характеристики точности приближённых величин;

б) оценивать точность результата, когда известна точность исходных данных;

в) находить точность исходных данных, обеспечивающую заданную точность результата;

г) согласовывать точность исходных данных с тем, чтобы не затрачивать излишней работы при отыскании или вычислении одних данных, если другие данные слишком грубы;

а) Определение: абсолютная погрешность - это абсолютная величина разности между точным значением величины и её приближённым значением :

(1.1)

Здесь следует различать два случая:

- точное значение числа нам известно, что на практике очень редко, тогда пользуемся формулой (1.1).

Пример 1: а=5.129 а*=5.128, тогда ;

- точное значение числа неизвестно, тогда вводят понятие предельной абсолютной погрешности.

Определение: предельной абсолютной погрешностью приближённого числа называют всякое число, не меньшее абсолютной погрешности этого числа.

Таким образом, если - предельная абсолютная погрешность приближённого числа , то

(1.2)

отсюда следует, что

(1.3)

Значение предельной абсолютной погрешности, обычно, подбирается интуитивно по смыслу задачи.

Пример 2: Определить предельную абсолютную погрешность числа , заменяющего число , точное значение которого нам неизвестно.

Так как мы знаем, что , то можем утверждать:

(1.4)

и, следовательно, , т.е. можем сказать, что

(1.5)

Понятия абсолютной погрешности и предельной абсолютной погрешности, хотя и дают представление о точности вычислений, однако не всегда достаточны.

Например: если при измерении длины стержней получены результаты: <l1 и l2>, то, несмотря на совпадение предельных абсолютных погрешностей, качество первого измерения выше второго, т.к. если погрешность близка по величине от самого приближённого числа, то точность этого измерения недостаточна. Изданного примера понятно, что для оценки качества измерения, нам нужна абсолютная погрешность, приходящаяся на единицу длины. Такая погрешность носит название относительной погрешности.

Определение: относительной погрешностью приближённого числа называется отношение абсолютной погрешности этого числа к модулю соответствующего точного числа :

(1.6)

Поскольку точное значение величины нам часто не известно, то рассмотрим понятие предельной относительной погрешности .

Определение: предельной относительной погрешностью данного приближённого числа называется всякое число, не меньшее относительной погрешности этого числа:

(1.7)

Отсюда следует, что

(1.8)

т.е.

(1.9)

но, как известно:

(1.10)

Сопоставление формул (1.9) и (1.10) даёт соотношение между предельной абсолютной погрешностью и предельной относительной погрешностью :

(1.11)

Из этой формулы иногда выражают и пишут:

(1.12)

Рассмотрим примеры:

Пример 3: Вес 1 дм3 воды при равен г. Определить предельную относительную погрешность результата взвешивания.

Решение: очевидно, что предельная абсолютная погрешность г. и , следовательно:

(1.13)

Пример 4: При определении газовой постоянной для воздуха, получили . Зная, что относительная погрешность этого значения , найти пределы, в которых заключается R.

Решение: имеем: , тогда , т.е.

(1.14)

Теперь займёмся изучением распространения погрешностей из-за арифметических действий.

б) Рассмотрим функцию , пусть значения переменных , вычислены приближённо, где соответствующие абсолютные погрешности.

Нас интересует абсолютная и относительная погрешности вычисленных значений функции .

По определению видно, что абсолютная погрешность функции имеет вид:

обычно , поэтому, раскладывая в ряд Тейлора, можно ограничиться лишь линейными членами по . Получаем:

(1.15)

Отсюда получаем оценку:

(1.16)

Тогда для предельных абсолютных погрешностей имеем:

(1.17)

Разделив обе части (1.17) на , получаем предельную относительную погрешность при вычислении функции , в точке :

(1.18)

Или записывая более компактно:

(1.19)

Эту формулу можно переписать в виде:

(1.20)

в) Рассмотрим частные случаи:

1. Пусть . Изучим абсолютные и относительные погрешности суммы.

Решение: т.к.

(1.21)

то из (1.17) получаем

(1.22)

Также из (1.18) получаем:

(1.23)

2. Пусть, . Изучим абсолютные и относительные погрешности разности

Решение: ; , поэтому из (1.17) имеем

(1.24)

А из (1.18) получаем:

(1.25)

Ясно, что если и близкие друг к другу числа, то очень малое число, т.е. абсолютная погрешность разности будет очень большим числом. Поэтому при вычислениях, где это возможно, нужно избегать вычитания близких друг к другу чисел.

Например, если нам нужно вести вычисления по формуле: - объём между двумя сферами, где - очень малое число. Здесь лучше избавиться от вычитания и пользоваться аналогичной формулой , тем самым, обходя вычитание близких чисел, которое может быть больше относительной погрешности вычислений.

3. Изучим погрешности произведения чисел.

(1.26)

(1.27)

отсюда очевидно, что

(1.28)

(1.29)

Таким образом, при умножении приближённых чисел, относительные погрешности складываются.

4. Рассмотрим погрешности деления чисел.

(1.30)

, (1.31)

Поэтому

(1.32)

(1.33)

Из вышеизложенных частных случаев следует, что при вычислениях на ЭВМ:

- нет смысла производить округление перед сложением (т.к. увеличим погрешность);

- при вычитании надо всячески избегать разности близких чисел;

- если вычисляем произведение чисел с k верными знаками, то в результате будем иметь не менее k-1 верных знаков;

- при делении действуют те же правила, что и при умножении, но надо избегать деления на малое число (близкое к нулю).

Вышеизложенная теория погрешностей основана на допущении, что -погрешности настолько малы, что их квадратами можем уже пренебрегать (на этом основано «обрезание» формулы Тейлора).

Поэтому все введённые формулы теряют силу, если эти условия нарушены. В таких случаях нужно использовать и квадратичные члены, чтобы получить более точную теорию.

Но надо учитывать, что в этом случае формулы значительно усложняются.

В заключение рассмотрим числовой пример:

Пример 5: Найти предельные абсолютную и относительную погрешности объёма шара , если см., .

Решение: ;

имеем:

; ; ;

; ; ;

(1.34)

(1.35)

Упражнение: вывести формулы предельной абсолютной и относительной погрешностей для функции , а далее для многочлена и рациональной функции.

Пример 6: Найти сумму приближённых чисел: и .

Решение:


, т.е. .

Пример 7: Найти относительную погрешность разности чисел и , если ,

т.е. если

Решение:

Именно поэтому избегают вычитания приближённых значений близких друг к другу чисел.

Пример 8: Найти произведение чисел, если все знаки верные: и .

Решение: , т.к. и ,

то имеем

и

следовательно

, т.е.

Окончательно имеем: .

Пример 9: Расстояние между двумя пунктами по прямой равно км.

За какое время звук распространится от одного пункта до другого в воздухе и по рельсам, если скорость звука в воздухе м/с, а в стали м/с?

Решение: (с.); (с.)

,

т.е.

(с.) (с.)

(с.) (с.)


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно