Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Диапазоны электромагнитных волн: Мириаметровые волны (СДВ)

Тип Реферат
Предмет Математика
Просмотров
1442
Размер файла
37 б
Поделиться

Ознакомительный фрагмент работы:

Диапазоны электромагнитных волн: Мириаметровые волны (СДВ)

Диапазоны электромагнитных волн: Мириаметровые волны (СДВ)

Прошло уже более века с момента, когда в 1886 г. немецкий ученый Г.Герц построил первые в мире передатчик и приемник электромагнитных волн. Они были весьма примитивны, однако сослужили очень важную роль для науки.

Электромагнитной волной называется процесс распространения переменного электромагнитного поля в свободном пространстве с конечной скоростью (скоростью света). Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга.

В соответствии с длинами волн (l) весь спектр электромагнитного излучения условно делится на ряд частично перекрывающихся областей – от радиоволн на его длинноволновой границе до гамма-лучей на границе коротких волн. Однако такое деление отражает зависимость не только от l, но и от способов генерации и обнаружения соответствующего электромагнитного излучения. Например, нет никакого принципиального различия между микроволновым и инфракрасным излучением одинаковых длин волн, но если излучение генерируется электронным прибором, его называют микроволновым, а если оно испускается инфракрасным источником – инфракрасным.

Международная классификация электромагнитных волн:

Частоты, исключая нижний и включая верхний пределНаименование частотыВолны исключая верхний и включая нижний пределНаименование волны
Диапазон радио- частот< 300 мГцинфразвуковые> 103 Мм
300...3000 мГцГипернизкие103...102 МмГектомегаметровые
3...30 ГцКрайненизкие102...10 МмКиломириаметровые
30...300 ГцСверх низкие10...1 МмГектомириаметровые
300...3000 ГцУльтра низкие103...102 кмДекамириаметровые
3..30 кГцОчень низкие102...10 кмМириаметровые
30...300 кГцНизкие10...1 кмКилометровые
300...3000 кГцСредние103...102 мГектометровые
3...30 МГцВысокие102...10 мДекаметровые
30...300 МГцОчень высокие10...1 мМетровые
300...3000 МГцУльтравысокие102...10 смДециметровые
3...30 ГГцСверхвысокие10...1 смСантиметровые
30...300ГГцКрайне высокие10...1 ммМиллиметровые
300...3000 ГГцГипер высокие103...102 мкмДецимиллиметровые
Оптический диапазон3...30 ТГцНизкие инфракрасные102...10 мкмСантимиллиметровые
30...400 ТГцВысокие инфракрасные105...7,5 ·103 АМикрометровые
400...750 ТГцВидимые (световые)7,5 ·103...4 ·103 А
750...3000 ТГцНизкие ультрафиолетовые4·103...103 АДецимикрометровые
3·103...3·104 ТГцВысокие ультрафиолетовые102...10 ммСантимикрометровые
Верхний диапазон электро- магнитного спектра3·104...3·105 ТГцНизкие рентгеновские10...1 ммНанометровые
3·105...3·106 ТГцСредние рентгеновские103...102 пмДецинанометровые
3·106...3·107 ТГцВысокие рентгеновские102...10 пмСантинанометровые
3·107...3·108 ТГцНизкие Гамма (Альфа)10...1 пмПикометровые
3·108...3·109 ТГцВысокие (Бета)103...102 фмДеципикометровые
> 3·109 ТГцКосмические< 10 фмФемтометровые

Мириаметровыми (или сверхдлинными) волнами (СДВ) называются электромагнитные волны очень низкой частоты (3 – 30 кГц), длины которых в вакууме лежат в интервале 100 – 10 км. Мощным естественным источником радиоволн этого диапазона являются молниевые разряды.

Для СДВ длина волны сравнима с расстоянием от поверхности Земли до ионосферы, поэтому они могут распространяться по сферическому волноводу Земля — ионосфера на очень большие расстояния с незначительным ослаблением (атмосферный волновод). Характерной особенностью СДВ при их распространении вокруг Земли является слабое затухание поля с удалением от излучателя и высокая его фазовая и амплитудная стабильность (по сравнению с радиоволнами более высоких частот) при регулярных и случайных вариациях свойств трассы распространения (суточные и сезонные изменения атмосферы, сезонные изменения свойств земной поверхности, ионосферные возмущения и т.д.). Это и обуславливает применение СДВ в глобальных радиосистемах высокой точности и надежности, несмотря на необходимость использования излучающих антенных систем больших размеров и более низкую скорость передачи информации. Кроме того радиоволны этого диапазона обладают большой глубиной проникновения в проводящие среды, что делает возможным их применение для связи с погруженными в морскую воду и в толщу земли объектами.

Особенности распространения сверхдлинных волн.

В диапазонах радиоволн с частотой менее 30 кГц для всех видов земной поверхности токи проводимости существенно преобладают над токами смещения, благодаря чему при распространении поверхностной волны происходит лишь незначительное поглощение энергии. Длинные волны хорошо дифрагируют вокруг сферической поверхности Земли.

Оба эти фактора обусловливают возможность распространения сверхдлинных волн на расстояние порядка 3000 км. При этом для расстояния 500—600 км напряженность лектрического поля можно определять формулой Шулейкина-Ван-дер-Поля :

Em = |W|

а для больших расстояний расчет ведут по законам дифракции.

Начиная с расстояния 300—400 км, помимо земной волны, присутствует волна, отраженная от ионосферы.

С увеличением расстояния напряженность электрического поля отраженной от ионосферы волны увеличивается, и на расстояниях 700—1000 км напряженности полей земной и ионосферной волн становятся примерно равными. Суперпозиция этих двух волн дает интерференционную картину поля (рис 1.1).

Рис. 1.1. Характер изменения напряженности электрического поля СДВ с расстоянием (Р =1 кВт)

На расстоянии свыше 2000—3000 км земная и ионосферная волны не проявляются по отдельности. Распространение происходит подобно распространению в волноводе, стенками которого служат поверхность Земли и нижняя граница ионосферы.

Диэлектрическая проницаемость ионосферы в этих диапазонах волн определяется выражением:

e = 1 - (w0/w)2 , w0 = – плазменная частота.

и условие отражения записывается в виде :

sin(q0) =

где w меньше или равна величины n.

При этом высота отражения зависит от закона изменения с высотой как Ne, так и n. Установлено, что концентрация электронов Ne распределена по высоте неравномерно : имеются области или слои, где она достигает максимума. Расчеты и эксперименты показывают, что днем отражение волн может происходить на нижней границе слоя Е (область на высоте 150 км), а ночью — на нижней границе слоя D (область на высоте 90 км). Электропроводность в этой области ионосферы для сверхдлинных волн довольно значительная (но в тысячи раз меньше, чем электропроводность сухой земной поверхности), и токи проводимости оказываются по величине того же порядка, что и токи смещения. Следовательно, нижняя область ионосферы для сверхдлинных волн обладает свойствами полупроводника.

На сверхдлинных волнах электронная плотность слоев D и Е меняется резко на протяжении длины волны. Поэтому и отражение здесь происходит, как на границе раздела воздух—полупроводник, без проникновения радиоволны в толщу ионизированного газа. Этим обусловлено слабое поглощение сверхдлинных волн в ионосфере.

Расстояние от поверхности Земли до нижней границы ионосферы составляет 60—100 км. Это расстояние имеет тот же порядок, что и длина СДВ, так что волны распространяются между двумя близко расположенными полупроводящими концентрическими сферами, одной из которых является Земля, а другой—ионосфера. Условия распространения при этом примерно такие же, как и в диэлектрическом волноводе (рис 1.2).

Как и во всяком волноводе, можно отметить оптимальные волны—волны, распространяющиеся с наименьшим затуханием, и критические волны—волны с предельной длиной волны, которые еще могут распространяться. Для волновода, образованного Землей и ионосферой, оптимальными являются волны длиной 25—35 км, а критической—волна длиной около 100 км.

В сферическом ионосферном волноводе фазовая скорость радиоволн превышает скорость света в свободном пространстве. На частотах выше 10 кГц отличие фазовой скорости от скорости света невелико, примерно (vф/c - 1) = (1¸5)×10-3. Однако фазовая скорость меняется с расстоянием, она зависит от электронной плотности и числа столкновений электронов с молекулами в той области ионосферы, где происходит отражение радиоволн. Это приводит к нестабильности фазы волны главным образом в утренние и вечерние часы, когда меняется высота отражения длинных волн, что необходимо учитывать при работе длинноволновых радионавигационных систем.

Методы расчета напряженности поля СДВ на больших расстояниях от передатчика основаны на рассмотрении картины поля ионосферного волновода. Действительно, вся электромагнитная энергия, излученная антенной, оказывается заключенной между двумя сферами и распространяется между ними по всем направлениям, поскольку в диапазоне СДВ, как правило, применяются ненаправленные антенны (см. рис.1.2 ). С удалением от антенны кольцевое сечение сферического волновода увеличивается, пока внутренний радиус кольца, в котором распространяется волна, не достигнет величины радиуса земного шара. При дальнейшем увеличении расстояния площадь кольца вновь уменьшается и энергия волны концентрируется. Характер изменения напряженности электрического поля длинных волн с расстоянием при большом удалении от передатчика изображен на рис. 1.3 сплошной линией. Пунктирная кривая показывает характер изменения напряженности электрического поля в сферическом волноводе с идеально проводящими стенками.

Рис.1.2. Распространение сверхдлинных волн в волноводе Земля — ионосфера

Рис. 1.3. Зависимость напряженности электрического поля СДВ от расстояния:

1 — без учета поглощения;

2 — с учетом поглощения

Расчет напряженности электрического поля сверхдлинных волн обычно ведут по эмпирическим формулам, чаще всего по формуле Остина. По формуле Остина можно рассчитать напряженности электрического поля длинных волн в дневное время для расстояний до 16000—18000 км над морем и сушей, причем в последнем случае начиная с расстояний 2000—3000 км.

Формула Остина имеет следующий вид:

Em = ××e - ×r (км) , где угол q обозначен на рис. 1.2

Наличие в знаменателе этой формулы величины отражает зависимость напряженности электрического поля от расстояния, изображенную на рис.1.3 пунктирной кривой. Как видно из рис.1.3, на расстояниях от передатчика, соответствующих антиподным (диаметрально противоположным) точкам земного шара, наблюдается существенное увеличение напряженности поля. Это явление называется эффектом антипода.

Основное преимущество сверхдлинных волн — большая устойчивость напряженности электрического поля: сила сигнала на линии связи мало меняется в течение суток и в течение года и не подвержена случайным изменениям. Достаточную для приема напряженность электрического поля можно обеспечить на расстоянии более 20 000 км, но для этого требуются мощные передатчики и громоздкие антенны.

Недостатком СДВ является невозможность передачи широкой полосы частот, необходимой для трансляции разговорной речи или музыки. В настоящее время сверхдлинные радиоволны применяются главным образом для телеграфной связи на дальние расстояния, а также для навигации.

Условия распространения сверхдлинных радиоволн исследуют, наблюдая за грозами. Грозовой разряд представляет собой импульс тока, содержащий колебания различных частот—от сотен герц до десятков мегагерц. Основная часть энергии импульса грозового разряда приходится на диапазон колебаний, соответствующий сверхдлинным волнам. Колебания от места возникновения распространяются во все стороны, причем волны различной длины при распространении испытывают различное поглощение и приходят в разной фазе. В результате импульс, пришедший на значительное расстояние от места разряда, искажается. По искажению импульса изучают свойства сферического волновода Земля — ионосфера.

В диапазоне длинных волн наблюдается своеобразная помеха — “свистящий атмосферик”. Он воспринимается на слух как сигнал, частота которого меняется во времени за (0,5—1 с примерно от 400 до 8000 Гц). Источником “свистящего атмосферика” является грозовой разряд, возбуждающий сверхдлинные волны. При распространении волны в ионизированном газе в направлении силовых линий постоянного магнитного поля при f < fH = 1.4 МГц не происходит отражения волны от ионосферы, поскольку диэлектрическая проницаемость ионосферы всегда больше единицы. Волна распространяется вдоль силовых линий магнитного поля Земли, пронизывает всю толщу ионосферы и может быть принята на Земле на другом конце силовой линии магнитного поля, как схематически показано на рис.1.4.

Рис. 1.4. Схема распространения “свистящих атмосфсриков”:

1 — грозовой разряд; 2 — силовые линии магнитного поля Земли;

3—путь короткого “свистящего атмосферика”;

4—путь длинного “свистящего атмосферика”

Сигнал, отраженный от земной поверхности, проходит обратный путь и может быть принят в месте возникновения грозового разряда. Время запаздывания таких сигналов составляет 2—3 с, откуда следует, что они проходят путь в многие тысячи километров, удаляясь от Земли на расстояние 10000—15000 км. Это явление привлекло внимание исследователей потому, что наблюдение за “свистящими атмосфериками” позволяет получить сведения о состоянии магнитного поля Земли и плотности среды на большом расстоянии от ее поверхности.

Использование СДВ.

СДВ широко используются в системах радиосвязи, радионавигации, передаче сигналов эталонных частот и единого времени, а также в геофизических исследованиях электрических свойств Земли, земной ионосферы и магнитосферы Земли.

Связь на сверхдлинных волнах для подводного флота имеет важнейшее значение. Сверхдлинные волны могут проникать в воду на большую глубину и подводные лодки могут принимать сообщения на сверхдлинных волнах не всплывая. Это очень важно для подводных лодок, особенно находящихся на боевом патрулировании, так как всякое всплытие демаскирует лодку. Поэтому подводные лодки обычно только принимают сообщения по СДВ-связи. Даже всплытие для передачи сообщения на коротких или ультракоротких волнах лодки выполняют только по приказу, полученному на сверхдлинных волнах.

Сверхдлинные волны отражаются ионосферой Земли на высоте 60-100 км, поэтому никакой спутник не в состоянии их обнаружить.

Станции ВМФ (которые обеспечивают связь с подводными лодками в подводном положении) можно также использовать для прогнозирования сильных землетрясений в различных точках земного шара. Дело в том, что сверхдлинные волны, изучаемые этой станцией, пронизывают не только толщу воды, но и земные недра. В результате анализа прохождения этих волн в земных недрах можно фиксировать изменения напряжения на стыках тектонических пластов и другие параметры. Имея такую картину, ученые-сейсмологи смогут разработать методику определения координат предстоящего землетрясения, его силы и ориентировочного времени. СДВ-станции могут также применяться для исследования геодинамики и поиска полезных ископаемых.

Список литературы

Краснушкин П.Е., Яблочкин Н.А., Теория распространения сверхдлинных волн, 2-е изд. М. 1963.

Макаров Г.И., Новиков В.В., Орлов А.Б., Современное состояние исследований распространения СДВ в волноводном канале Земля-ионосфера, "Изд. ВУЗов. Радиофизика", 1970, т.13, № 3, с.321.

Ельянов М.М. Практикум по радиоэлектронике. Москва: "Просвещение", 1971. - 336 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно