Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Метод Зойтендейка

Тип Реферат
Предмет Математика
Просмотров
303
Размер файла
501 б
Поделиться

Ознакомительный фрагмент работы:

Метод Зойтендейка

ГК и ВО России

НГТУ

Кафедра АСУ

Реферат на тему:

Метод Зойтендейка

Факультет: АВТ

Группа: АС-513

Студент: Ефименко Д.В.

Преподаватель: Ренин С.В.

Новосибирск

1997

Содержание:

Введение2
Случай линейных ограничений 2

Геометрическаяинтерпретация возможного

направления спуска2

Построение возможных направлений спуска 3
Задачи с нелинейными ограничениями-неравенствами 9
Алгоритм метода Зойтендейка (случай нелинейных
ограничений-неравенств)11
Учет нелинейных ограничений-равенств 14
Использование почти активных ограничений 15
Список литературы18

Введение

Я хочу описать Вам метод возможных направлений Зойтендейка. На каждой итерации метода строится возможное направление спуска и затем проводится оптимизация вдоль этого направления.

Следующее определение вводит понятие возможного направления спуска.

ОПРЕДЕЛЕНИЕ. Рассмотрим задачу минимизации f(х) при условии, что хÍS, где f: Еn1, а S—непустое мно­жество из Еn. Ненулевой вектор d называется возможным направлением в точке хÍS, если существует такое d>0, что х+lxÍS для всех lÍ(0,d). Вектор d называется возможным направлением спуска в точке xÍS, если существует такое d>0, что f(х+ld)<f(x) и х+ldÍS для всех lÍ(0, 6).

Случай линейных ограничений

Вначале рассмотрим случай, когда допустимая область S опре­делена системой линейных ограничений, так что рассматривае­мая задача имеет вид

минимизировать f(х)

при условиях Ах£b,

Ех=е.

Здесь А—матрица порядка m´ n,Е—матрица порядка l ´ n, b есть m-мерный вектор, а е есть l-мерный вектор. В следующей лемме приводятся соответствующие характеристики допустимойобласти и формулируются достаточные условия для существо­вания возможного направления спуска. В частности, векторdявляется возможным направлением спуска, если A1d£0, Еd=0 и Ñf(х)Td<0.

ЛЕММА. Рассмотрим задачу минимизации f(х) при условиях Ах£b и Ех=е. Пусть х—допустимая точка, и предположим, что А1x=b1 и А2x<b2, где АT=(А1T, А2T), а bT=(b1T, b2T). Тогда ненулевой вектор и является возможным направлением в точке х в том и только в том случае, если A1d£0и Еd=0. Если, кроме того, Ñf(х)Td<0, то d является возможным направлением спуска.

Геометрическаяинтерпретация возможного направления спуска

Проиллюстрируем теперь геометрически на примере множество возможных направлений спуска.

ПРИМЕР

Минимизировать при условиях

(x1-6)2+(x2-2)2

-x1+2x2£4

3x1+2x2£12

-x1£0

-x2£0

Возьмем х=(2, 3)T и заметим, что первые два ограничении являются активными в этой точке. В частности, матрица А1 из леммы равна А1=[-13 22]. Следовательно, вектор dявляется возможным направлением тогда и только тогда, когда А1d£0, т.е. в том и только в том случае, если

-d1+2d2£0,

3d1+2d2£0.

На рис. 1, где начало координат перенесено в точку х, изо­бражена совокупность этих направлений, образующая конус возможных направлений. Заметим, что если сдвинуться на не­большое расстояние от точки х вдоль любого вектора d, удов­летворяющего двум приведенным выше неравенствам, то оста­немся в допустимой области.

Если вектор d удовлетворяет неравенству 0>Ñf(х)Td=-8d1+2d2, то он является направлением спуска. Таким образом, совокупность направлений спуска определяется открытым полупространством {(d1,d2}:-8d1+2d2<0}. Пересече­ние конуса возможных направлений с этим полупространством задает множество всех возможных направлений спуска.


Рис. 1. Возможные направления спуска,1—конус возможных направле­ний: 2 — конус возможных направлений спуска; 3 — линии уровня целевой функции; 4 — полупространство направлений спуска.

Построение возможных направлений спуска

Пусть задана допустимая точка х. Как показано в лемме , ненулевой вектор и является возможным направлением спуска. Естественный подход к построению такого направления заключается в минимизации Ñf(х)Td. Заметим, однако, что если существует вектор d, такой, что Ñf(х)Td <0, А1d£0, Еd= 0, то оптимальное значение целевой функции в сформу­лированной задаче равно —¥, так как ограничениям этой за­дачи удовлетворяет любой вектор ld, где l—сколь угодно большое число. Таким образом, в задачу должно быть включено условие, которое ограничивало бы вектор и или оптимальное значение целевой функции. Такое ограничение обычно называют нормирующим. Ниже приведены три задачи построения


возмож­ного направления спуска, В каждой из этих задач используются различные формы нормировки.

Задачи Р1 и РЗ являются задачами линейного программиро­вания и, следовательно, могут быть решены симплекс-методом. Задача Р2 содержит квадратичное ограничение, но может быть рассмотрена в несколько упрощенном виде. Так как d = 0 является допустимой точкой в каждой из приведен­ных выше задач и так как значение целевой функции в этой точке равно нулю, то ее оптимальное значение в задачах Р1, Р2 и РЗ не может быть положительным. Если минимальное значе­ние целевой функции в задачах Р1, Р2 или РЗ отрицательно, то по лемме построено возможное направление спуска. С другой стороны, если минимальное значение целевой функции равно нулю, то, как показано ниже, х является точкой Куна —Таккера.

ЛЕММА. Рассмотрим задачу минимизации f(х) при условиях Ах£b и Ех=е. Пусть х — допустимая точка, для которой А1x=b и А2x<b2, где АT=(А1T, А2T), а bT=(b1T, b2T). Тогда х является точкой Куна—Таккера в том и только в том случае, если оптимальное значение целевой функции в задачах Р1, Р2 или РЗ равно нулю.

Доказательство. Вектор х является точкой Куна—Таккера тогда и только тогда, когда существуют векторы u³0 и v, такие, что. По следствию 2 из теоремы эта система разрешима в том и только в том случае, если система не имеет решений, т. е. тогда и только тогда, когда оптимальное значение в задачаxР1, Р2 или РЗ равно нулю.

Линейный поиск

Только что было показано, как строить возможное направление спуска или убедиться, что текущая точка удовлетворяет условиям Куна—Таккера. Пусть теперь хk —текущая точка, а dk-возможное направление спуска. В качестве следующей точки xk+1 берется, где длина шага К& определяется из реше­ния следующей задачи одномерной минимизации:

Минимизировать

при условиях

Предположим теперь, что АT=(А1T, А2T), а bT=(b1T, b2T), такчто и .Тогда задачу одномерной мини­мизации можно упростить следующим образом. Во-первых, за­метим, что Ехk=е и Еdk=0, так что ограничение излишне. Так как и для всех l³0. Таким образом, рассматриваемая задача приводится к следующей задаче линейного поиска;

(1)

Алгоритм метода Зойтендейка (случай линейных ограничений)

Ниже приведен алгоритм метода Зойтендейка для минимизации дифференцируемой функции f при условии, что .

Начальный этап. Найти начальную допустимую точку х1, для которой . Положить k= 1 и перейти к основ­ному этапу.

Основной этап. Шаг 1. Пусть задан хk. Предположим, что АT=(А1T, А2T), а bT=(b1T, b2T),так что . Взять в качестве dk оптимальное решение следующей задачи(заметим, что вместо этой задачи можно использовать Р2 или РЗ):


Если , то остановиться; хk—точка Куна—Таккера, В противном случае перейти к шагу 2.


Шаг 2. Положить равным оптимальному решению еле-., дующей задачи линейного поиска:

где определяется в соответствии с (1). Положить, определить новое множество активных ограниче­ний в и переопределить А1 и А2. Заменить k на k+1 и перейти к шагу 1.

Заметим, что . Решим задачу методом Зойтендейка, взяв в качестве начальной точки . Каждая итерация алгоритма содержит решение подзадачи, определенной в описании шага 1, для нахождения направления, а затем линейный поиск вдоль этого направления.

Итерация 1


Поиск направления. В точке имеем . Кроме того, в точке x1 активными являются толь­ко ограничения неотрицательности переменных, так что l = {3,4}. Задача для нахождения направления имеет вид

Рис. 2

Эту задачу можно решить симплекс методом для решения задач линейного программирования. На рисунке 2 показана допустимая область этой задачи.

Линейный поиск. Теперь, двигаясь из точки (0, 0) вдоль направления (1, 1), нужно найти точку, в которой значение це­левой функции минимально. Любая точка может быть записана в виде , а целевая функция в этой точке принимает вид . Максимальное значение коэффициента l, для ко­торого точка допустима, вычисляется по формулам и равно

Следовательно, если —новая точка, то значение по­лучается из решения следующей задачи одномерной миними­зации:

минимизировать —10+2

при условии 0££ .

Очевидно, что решением является , так что

Итерация 2

Поиск, направления. В точке имеем .

Рис 3.

Кроме того, множество активных ограничений в точке х2 равно l={2}, так что направление движения получается из решения следующей задачи:

минимизировать

при условии

Читатель может проверить на рис. 3, что оптимальным реше­нием этой задачи линейного программирования является точка, а соответствующее значение целевой функции равно .

Линейный поиск. При начальной точке х2 любая точка в на­правленииd2 может быть представлена в виде Соответствующее ей значение целевой функ­ции равно

Максимальноезначение l для которого точка Х2+ld2 остается допустимой, определяется в соответствия с (1) следующим образом:

Таким образом, в качестве ^ берется оптимальное решение сле­дующей задачи:

минимизировать

при условии

Оптимальным решением этой задачи является ,так что


Рис 4.

Итерация 3

Поиск направления. Вточкех3= имеем Кроме того, множество активных ограни­чений в точке хз равно l ={2}, так что направление движения получается из решения следующей задачи:

Можно легко проверить по рис. 4. что действительно является решением этой задачи ли­нейного программирования. Соответствующее значение целевой функции равно нулю, и процедура заканчивается. Более того, точка является точкой Куна—Таккера.

В этой конкретной задаче функция f выпукла, и по теореме 4.3.7 точка х является оптимальным решением.

Таблица 1


Результаты вычислений по методу Зойтендейка для случая линейных ограничений

Рис. 5. Поиск решения методом Зойтендейка (случай линейных ограничений).

В табл. 1 приведены результаты вычислений для рассмо­тренной задачи. На рис. 10.5 изображен процесс поиска решения в соответствии с описанным алгоритмом.

Задачи с нелинейными ограничениями-неравенствами

Теперь рассмотрим задачу, в которой допустимая область за­дается системой ограничений-неравенств не обязательно ли­нейных:

минимизировать f(х)

при условиях gi(х)£0,i=1, ...,m.

В теореме формулируются достаточные условия, при которых вектор d является возможным направлением спуска.


ТЕОРЕМА. Рассмотрим задачу минимизации f(х) при условиях gi (х)£0,i=1, ...,m.. Пусть х—допустимая точка, а I—множество индексов активных в этой точке ограни­чений, т. е.. Предположим, кроме того, что функции f и gi для дифференцируемы в х, а функции giдля непрерывны в этой точке. Если при , то вектор d является возможным на­правлением спуска.

Рис. 6. Совокупность возможных направлений спуска в задаче с нелиней­ными ограничениями. 1— 1-е ограничение; 2—3-е ограничение; 3—4-е ограни­чение; 4— 2-е ограничение; 5— возможные направления спуска; 6— линии уровня целевой функции.

Доказательство. Пусть вектор и удовлетворяет неравенствам и при . Для выполняютсянеравенства , и так как gi непрерывны в точке х, то для достаточно малых . В силу дифференцируемости функций gi при имеем

где при . Так как , то при достаточно малых . Следовательно, при i = 1, ...,m, т.е. точка допустимая для достаточно малых положительных значений . Аналогично из следует, что для достаточно малых > 0 имеем . Следовательно, вектор и является возможным направлением спуска.

На рис. 6 показана совокупность возможных направлений спуска в точке х. Вектор d, удовлетворяющий равенству , является касательным к множеству в точке х. Поскольку функции gi нелинейны, движение вдоль такого вектора d может привести в недопустимую точку, что вы­нуждает нас требовать выполнения строгого неравенства .


Чтобы найти вектор d, удовлетворяющий неравенствам для , естественно минимизи­ровать максимум из и для . Обозначим этот максимум через z. Вводя нормирующие ограничения Для каждого j, получим следующую задачу для нахождения направления.

Пусть (z, d)—оптимальное решение этой задачи линейного про­граммирования. Если z<0, то очевидно, что d—возможное направление спуска. Если же z= 0, то, как показано ниже, те­кущая точка является точкой Ф. Джона.


ТЕОРЕМА.. Рассмотрим задачу минимизации f(х) при условиях gi(х)£0, i = 1,..., m. Пусть х—допустимая точка, а. Рассмотрим следующую задачу на­хождения направления:

Точка х является точкой Ф. Джона для исходной задачи тогда и только тогда, когда оптимальное значение целевой функции задачи поиска направления равно нулю.

Точка х является точкой Ф. Джона для исходной задачи тогда и только тогда, когда оптимальное значение целевой функции задачи поиска направления равно нулю.


Доказательство. Оптимальное значение целевой функции в сформулированной задаче нахождения направления равно нулю в том и только в том случае, если система неравенств при не имеет решения. По теореме для того, чтобы эта система не имела решения, необходимо и достаточно, чтобы существовали такие числа uo и ui, , что

Это и есть условие Ф. Джона.

Алгоритм метода Зойтендейка (случай нелинейных ограничений-неравенств)

Начальный этап. Выбрать начальную точку х1, для которой gi(xi)£0 приi= 1, ...,m. Положить k= 1 и перейти к ос­новному этапу.

Основной этап. Шаг 1. Положить и ре­шить следующую задачу:


Пусть (zk, dk) — оптимальное решение. Если zk=0, то остано­виться; xkявляется точкой Ф. Джона. Если zk< 0, то перейти к шагу 2.


Шаг 2. Взять в качестве ^ оптимальное решение следующей задачи одномерной минимизации:

где. Положить . заменить k на k+1 и перейти к шагу 1.


ПРИМЕР. Рассмотрим задачу

Решим эту задачу методом Зойтендейка. Начнем процесс из точки .Отметим, что

Итерация 1


Поиск направления. В точке х1= (0.00, 0.75)Tимеем а множество индексов активных ограничений есть I={3}. При этом Задача нахождения направления имеет вид

Можно легко проверить, используя симплекс-метод, что оптимальным решением этой задачи является вектор

Линейный поиск. Любая точка по направлению d1== (1.00, —1.00)T из точки xi= (0.00, 0.75)T может быть представлена в виде ,а соответствующее ей значение целевой функции равно . Макси­мальное значение, для которого остается допустимой точкой, равно == 0.414. При этом значенииl активным ста­новится ограничение . Значение l получается изрешения следующей задачи одномерной минимизации:

минимизировать 6l2—2.5l—3.375

при условии 0£l£0.414

Оптимальное значение равно l1= 0.2083. Следовательно, х2= (x1+l1d1) -(0.2083,0.5417)T.

Итерация 2

Поиск направления. В точке x2= (0.2083, 0.5417)T имеем (х2)=(—4,2500, —4.2500)T Активных ограничений в этой точке нет, и поэтому задача определения направления имеет вид

минимизировать z

при условиях —4.25d1—4.25d2—z£0,

-1<d1<1, j=1,2.

Оптимальным решением является вектор d2=(1, 1)T, а z2= -8.50.

Линейный поиск. Можно легко проверить, что мак­симальное l, при котором точка x2+ld2 допустима, равно lmax== 0.3472. При этом активным становится ограничение . Значение l2 получается минимизацией при условии и, оче­видно, равно l2 = 0.3472, так что хз2 +l2d2= (0.5555, 0.8889)T.

Итерация 3


Поиск направления. В точке xз= (0,5555, 0.8889)Tимеем (хз)=(—3.5558, —3.5554)", а множество индексов активных ограничений есть I ={1}. Задача определения направления имеет вид

Оптимальным решением является вектор.

Линейный поиск. Максимальное значение l при котором точка xз+ldз допустима, равно lmax= 0,09245. При этом l ак­тивным становится ограничение . Значение l3 полу­чается минимизациейпри условии 0,09245. Оптимальным решением этой за­дачи являетсяl3= 0.09245, так что = (0.6479, 0.8397)T.

Итерация 4

Поиск, направления. Для точки х4= (0.6479, 0.8397)T имеем =(— 3.0878, —3.9370)^ а I={2}. Задача определения направления имеет вид


Оптимальным решением этой задачи является вектор d4= (-0.5171, 1.0000)T и z4=— 2.340.

Линейный поиск. Максимальное значение К, для которого точках4+ld4 допустима, равно lmах= 0.0343. При этом огра­ничение становится активным. Значение l4 полу­чается минимизацией f(x4+ ld4) == 3,569l2— 2.340l —6.4681 при условии и равно l4= 0.0343. Следовательно, новой точкой является x5==x4+l4d4= (0.6302, 0.8740)T.Значе­ние целевой функции в этой точке равно -6.5443, т. е. сравняю со значением —6.5590 в оптимальной точке (0.658872, 0.808226)T.

В табл. 2 приведены результаты вычислений на первых четырех итерациях метода. На рис. 7 показан процесс поиска оптимума.


Таблица 2


Рис 7

Учет нелинейных ограничений-равенств

Метод возможных направлений может быть модифицирован на случай, когда имеются нелинейные ограничения-равенства. Для иллюстрации обратимся к рис. 8, который отвечает единствен­ному ограничению-равенству. Для заданной допустимой точки хk, в этом случае не существует ненулевого направления d, та­кого, что при для некоторого положи­тельного d. Это затруднение можно преодолеть, если двигаться вдоль касательного направления dk, для которого , а затем скорректировать движение и возвратиться в до­пустимую область.


Рис. 8. Нелинейные ограничения-равенства. 1—касательное направление; 2 — корректирующее движение в допустимую область.

Чтобы быть более точным, рассмотрим следующую задачу:

минимизировать f(х)

при условиях gi(х)£0, i= 1,...,m,

hi(х)=0, i=1, ...,i.


Пусть xk—допустимая точка и l= {i. gik)==0}. Решим сле­дующую задачу линейного программирования:

Искомое направление dk является касательным к ограниче­ниям-равенствам и к некоторым активным нелинейным ограни­чениям-неравенствам. Линейный поиск вдоль dkн последующее возвращение в допустимую область приводят в точку хk+1, после чего процесс повторяется.

Рис. 9. Использование почти активных ограничений. 1 — оптимальное решение; 2— линии уровня целевой функции; 3—1-е ограничение; 4— 2-е ограничение.

Использование почти активных ограничений

Напомним задачу определения направления как для случая ли­нейных, так и нелинейных ограничений-неравенств. Если задан­ная точка близка к границе, определяемой одним из ограниче­ний, и если это ограничение не используется в процессе нахож­дения направления движения, то может случиться так, что удастся сделать только маленький шаг и мы окажемся на гра­нице, определяемой этим ограничением. На рис. 9 в точке х активным является только первое ограничение. Однако точка х близка к границе, определяемой вторым ограничением. Если множество I в задаче определения направления задать в виде I={1}, то оптимальным будет направление d и до выхода на границу допустимой области можно сделать только маленький шаг. Если же в множество активных ограничений включить оба ограничения, т. е. положить I={1, 2), то решение задачи Р

определения направления даст вектор и, который обеспечивает большие возможности для движения в рамках допустимой об­ласти. Таким образом, это наводит на мысль о том, что в ка­честве множества I следует брать совокупность индексов почти активных ограничений. Точнее, вместо множества {i: gi(х)=0} в качестве I следует брать множество {i,gi(х)+е³0}, где е>0—достаточно малое число. Метод возможных направлений не обязательно сходится к точке Ф. Джона. Это

следует из того, что соответствующее алгоритмическое отображение незамкнуто. При более формальном использовании введённого здесь понятия почти активного ограничения можно установить замкнутость алгоритмического отображения и, следовательно, сходимость общего алгоритма.


Список литературы:

1. М. Базара, К. Шеттл «Нелинейное программирование. Теория и алгоритмы» М.: Мир 1982

2. Д. Химмельблау «Прикладное нелинейное программирование» М.: Мир 1975


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
147648
рейтинг
icon
3129
работ сдано
icon
1352
отзывов
avatar
Математика
Физика
История
icon
142374
рейтинг
icon
5881
работ сдано
icon
2654
отзывов
avatar
Химия
Экономика
Биология
icon
95355
рейтинг
icon
2031
работ сдано
icon
1273
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
54 249 оценок star star star star star
среднее 4.9 из 5
СПБГУ
Вероника очень понравилась как исполнитель, сделано все в срок и хорошо! рекомендую!
star star star star star
ГУАП
доброжелательный исполнитель , замечания исправлены. спасибо за работу. рекомендую данног...
star star star star star
ДВФУ
Работа супер! Огромное спасибо, вы угодили очень дотошному преподавателю!!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Задания

Тест дистанционно, Физика

Срок сдачи к 20 сент.

только что

решить 1-2 задача Только 26 вариант

Решение задач, Высшая математика

Срок сдачи к 20 сент.

1 минуту назад

подготовка к поступлению в мед вуз

Онлайн-репетитор, химия и биология

Срок сдачи к 2 окт.

5 минут назад

Сделать 2 доклада + презентации к ним

Доклад, История мосто и тонелестроения

Срок сдачи к 27 сент.

6 минут назад

Помощь в написании рецептов

Онлайн-помощь, Фармакология

Срок сдачи к 20 сент.

7 минут назад
10 минут назад

Помочь на экзамене

Онлайн-помощь, строительство

Срок сдачи к 21 сент.

10 минут назад

Ответить на вопросы по небольшому видео

Онлайн-помощь, Педагогика

Срок сдачи к 20 сент.

11 минут назад

Ответить на вопросы по небольшому ролику

Эссе, Педагогика

Срок сдачи к 20 сент.

11 минут назад

Мониторинг

Решение задач, Конституционное право

Срок сдачи к 20 сент.

11 минут назад

Написать статью по Общей гигиене. М-02215

Статья, медицина

Срок сдачи к 26 сент.

11 минут назад

Методы лучевой диагностики заболеваний молочных желез

Курсовая, Рентгенология, медицина

Срок сдачи к 6 окт.

11 минут назад

Решить задачи

Контрольная, Физика

Срок сдачи к 20 сент.

11 минут назад

Индивидуальный проект на тему влияние СМИ на социализацию подростков.

Курсовая, Введение в специальность

Срок сдачи к 5 окт.

11 минут назад

Научные работы по кардиологии

Статья, медицина

Срок сдачи к 30 нояб.

11 минут назад

Сделать презентацию и доклад на тему "Роль Ивана 3 в становлении...

Презентация, История России

Срок сдачи к 26 сент.

11 минут назад

Решить второй вариант

Решение задач, теплофизика

Срок сдачи к 30 сент.

11 минут назад

Храм Богоявления Господня г. Петухово

Статья, историческое краеведение

Срок сдачи к 24 сент.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно