Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


История тригонометрии в формулах и аксиомах

Тип Реферат
Предмет Математика
Просмотров
1580
Размер файла
89 б
Поделиться

Ознакомительный фрагмент работы:

История тригонометрии в формулах и аксиомах

Тригонометрические функции

Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников (trigwnon - треугольник, а metrew- измеряю).

В данном случае измерение треугольников следует понимать как решение треугольников, т.е. определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, а также задач планиметрии, стереометрии, астрономии и других приводятся к задаче решения треугольников.

Возникновение тригонометрии связано с землемерением, астрономией и строительным делом.

Впервые способы решения треугольников, основанные на изависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н .э.) и Клавдием Птолемеем (2 в. н. э.). Пожднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Значительный вклад в развитие тригонометрии внесли арабские ученые аль-Батани (850-929) и Абу-ль-Вефа Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10’ с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Теорему тангенсов доказал Региомонтан (латинизированное имя немецкого астронома и математика Иоганна Мюллера (1436-1476)). Региомонтан составил также плдробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) – творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Постепенно тригонометрия органически вошла в математический анализ, механику, физику и технические дисциплины.

Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались и приобрели важное значение для всей математики.

Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIII в. Леонардом Эйлером (1707-1783) членом Петербургской Академии наук.

Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях.

Позднее часть тригонометрии, которая изучает свойства тригонометрических функций и зависимости между ними, начали называть гониометрией (в переводе – наука об измерении углов, от греч. gwnia - угол, metrew- измеряю). Термин гониометрия в последнее время практически не употребляется.

Изучение свойств тригонометрических функций и зависимостей между ними отнесено к школьному курсу алгебры, а решение треугольников – к курсу геометрии.

Тригонометрические функции острого угла


В прямоугольном треугольнике, имеющем данный угол a, отношения сторон не зависят от размеров треугольника. Рассмотрим два прямоугольных треугольника АВС и А1В1С1 (рис.1), имеющих равные углы ÐА=ÐА1 =a. Из подобия этих треугольников имеем:

Если величину угла a измерить, то написанные равенства остаются справедливыми, а измениться

лишь числовое значение отношений и т.д. Поэтому отношения

В1
можно рассматривать как функции угла a.

С1
b
b1


Рис.1.

Синусом острого угла называется отношение противоположного этому углукатета к гипотенузе. Обозначают это так:


sina=

Значения тригонометрических функций (отношений отрезков) являются отвлеченными числами.

Приближенные значения тригонометрических функций острого угла можно найти непосредственно согласно их определениям. Построив прямоугольный треугольник с острым углом aи измерив его стороны, согласно определениям мы можемвычислить значение, например, sina.

Пользуясь тем, что значения тригонометрических функций не зависят от размеров треугольника, для вычисления значений sin углов a=30°; 45°; 60° рассмотрим прямоугольный треугольник с углом a=30°; и катетом ВС=a=1, тогда гипотенуза этого треугольника с=2, а второй катет b=Ö3; рассмотрим также треугольник с углом a=45° и катетом a=1, тогда для этого треугольника c=Ö2 и b=1.

Полученные результаты запишем в таблицу.

30°45°60°
sina


Рис.2.

Приближенные значения тригонометрических функций для углов от 0° до 90° можно получить построив четверть круга, радиус которогопримем за 1, и его дугу разделимна 45 равных частей. Тогда градусная мера каждой части будет равна 2°.

90°N


0,79

а

АbС 0,620°M Рис.3.

Радиусы АМ и АN разделим на 100 равных частей. Построим прямоугольный треугольник с вершиной в центре круга и катетом совпадающим с радиусом АМ и гипотенузой АВ=1. Если угол ВАС=a, то по определению тригонометрических функций мы имеем:

sina=а

Для угла 52° на шкале радиуса АN находим, что а=0,79, а на шкале радиуса АМ находим, что b=0,62., то есть sin52°=0,79.

Построив прямоугольные треугольники для углов a=2°, 4°, 6°, 8°,…, 88°, согласно рис.3., найдем значения (при аккуратных измерениях и вычислениях) с точностью до 0,01. Для углов 0°и 90°прямоугольных треугольников не существует. Однако, если гипотенуза АВ будет стремиться по положению к радиусу АМ, то угол a®0, а катеты а®0 и b®1. В таком случае для полноты значений тригонометрических функций принимают, что

sin0°=а=0; cos0°=b=1.

Что касается значений tga и ctga, то при a®0 отношение ®0, т.е. , а отношение при a®0 неограниченно возрастает. Этот результат записывают как ®¥, где символ ¥ указывает, что величина неограниченно возрастает и не может быть выражена никаким числом, так как знак ¥ не является каким-либо числом. Таким образом, принимают, что tg0°=0, а ctg0°не существует, что чаще записывают какctg0°=¥.

Рассуждая аналогично при a®90° приходим к целесообразности принять что

sin90°=1; cos90°=0, tg90° не существует (tg90°®¥) и ctg90°=0.

Приведем таблицу значений синусов для углов от 0° до 90° с шагом 2°, которую можно получить указанным выше способом.

градусы0246810121416182022
sin0,000,030,070,100,140,170,210,240,280,310,340,37
градусы242628303234363840424446
sin0,410,440,470,500,530,560,590,620,640,670,690,72
градусы485052545668606264666870
sin0,740,770,790,810,830,930,870,880,900,910,930,94
градусы72747678808284868890
sin0,950,960,970,980,980,990,991,001,001,00

Пользуясь значениями тригонометрической функции y=sinx из таблицы, построим график.

y

y=sinx

1

0 30° 60° 90°x

Рис.4.

Основные соотношения между тригонометрическими функциями острого угла

Для прямоугольного треугольника в соответствии с теоремой Пифагора

a2+b2=c2

или


По определению тогда


(1)

Легко также найти следующие зависимости


(2)

(3)


(4)


(5)

Из соотношений (1)-(5), которые называют основными, можно вывести и другие вспомогательные соотношения, например:

(6)

(7)

(8)

Соотношения (1)-(8) связывают все тригонометрические
функции так, что по значению одной из них для данного острого угла можно найти значения всех остальных функций для этого же угла.

Тригонометрические функции произвольного угла


Пусть в прямоугольной системе координат x0y задан радиус-вектор образующий с положительным направлением оси 0x угол a. Будем считать, что ось 0x– начальная сторона, а вектор - конечная сторона угла a. Проекция вектора на координатные оси соответственно обозначим ax и ay.

Можно показать, что отношения где а – длина вектора , зависят только от

величины угла a и не зависят от длины вектора . Поэтому эти отношения можно рассматривать как функции произвольного угла a.

Синусом угла a,образованного осью 0x и произвольным радиусом-вектором , называется отношение проекции этого вектора на ось 0yк его длине:


y

A


x

Рис. 6.

Если не указано сколько оборотов совершил вектор вокруг точки 0, то положение вектора определяет угол с точностью до целого оборота, т.е углу с начальной стороной 0xи конечной стороной соответствует бесчисленное множество углов, которые выражаются формулой

360°·n+a, где n=0; ±1; ±2; ±3; ±4; …

и sin(a+360°· n)=sina

Длина радиуса-вектора всегда число положительное. Проекция его на координатные оси величины алгебраические и в зависимости от координатных четвертей имеют следующие знаки:

В I четверти ax>0; ay>0;

Во II четверти ax<0; ay>0;

В III четверти ax<0; ay <0;

В IV четверти ax>0; ay<0/

График функции y=sinx

До сих пор аргументами тригонометрических функций рассматривались именованные величины – углы (дуги), измеренные в градусах или радианах. Значения тригонометрических функций, как отношения отрезков, являются абстрактными величинами (числами). При изучении свойств тригонометрических функций приходится сравнивать изменения функции в связи с изменениями аргумента, а сравнивать можно только однородные или, что еще лучше, абстрактные величины.

Кроме того, введение тригонометрических функций от абстрактного аргумента дает возможность применять эти функции в различных вопросах математики, физики, техники и т.д.

Вместо именованного значения аргумента тригонометрических функций в x (радианов) будем рассматривать абстрактное числогде r обозначает радианы, ии по определению принять что

sinx, где x – абстрактное число, равен sinx, где x измерен в радианах.

Тригонометрические функции являются периодическими, то есть существует число а, отличное от 0, такое, что при любом целом nтождественно выполняется равенство:

f(x+na)=f(x), n=0; ±1; ±2 ...

Число а называется периодом функции. Период функции sinx равен 2p. Для нее имеет место формула:

sin(x+2pn)= sinx, гдеn=0; ±1; ±2 ...

График функции y=sinx называют синусоидой. Для построения графика можно взять значения аргумента x с определенным интервалом и составить таблицу значений y=sinx, соответствующих выбранным значениям x, а затем по точкам, как это часто делается в алгебре, построить график.

Строим в системе координат x101y1 единичную окружность R=1 с центром 01 на оси абсцисс x1. Дугу этой окружности начиная от точки начиная от точки оси абсцисс x1 =+1, делим на n равных частей:

Затем строим вторую систему координат x0y, ось которой 0x совпадает с осью 01x1, но сначало координат 01(x1 =0) и 0(x=0) у етих систем различные. В новой системе координат отрезок оси абсцисс от x=0 до x=2p делим на n равных частей: Из точек деления окружности проводим прямые параллельные оси 0x, а из точек деления отрезка [0, 2p] проводим прямые, перпендикулярные этой осм. Точки пересечения соответствующих прямых будут точками графика y=sinx, так как ординаты этихточек равны значениям синуса, соответствующим значениям аргумента в точках деления отрезка [0, 2p].

Рис.8.

Некоторые свойства функции y=sinx

1. Непрерывность.

Функция y=sinxсуществует при всех действительных значения x, причем, график ее является сплошной кривой линией (без разрывов), т.е. функция sinx непрерывна.

2. Четность, нечетность.

Функция y=sinxнечетная и ее график симметричный относительно начала координат.

3. Наибольшие и наименьшие значения.

Все возможные значения функции sinxограничены неравенствами

-1£sinx£+1,

причем sinx=+1, если


и sinx=-1, если

4.Нулевые значения (точки пересечения графика функции с осью абсцисс).

sinx=0, если x=pn(n=0; ±1; ±2;…).

5. Интервалы возрастания и убывания.

Функция возрастает, т.е. большему значению аргумента соответствует большее значение функции на интервалах


(n=0; ±1; ±2;…).

И убывает, т.е. большему значению аргумента соответствует меньшее значение функции на интервалах


(n=0; ±1; ±2;…).


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно