Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Теория движения космических обьектов

Тип Реферат
Предмет Математика
Просмотров
794
Размер файла
22 б
Поделиться

Ознакомительный фрагмент работы:

Теория движения космических обьектов

Главным звеном в цепи космических дисциплин является теория движения космических обьектов .В этом докладе рассматривается одна из её составных частей - теория свободного полёта в полях тяготения .

Важнейшей из природных сил ,действующих на космический аппарат ,является сила всемирного тяготения .Силы тяготения (или силы притяжения ) подчиняются ньютоновскому закону всемирного тяготения .Этот закон говорит: всякие две материальные точки притягиваются друг к другу с силами ,прямо пропорциональными квадрату расстояния между ними ,или ,в математической форме :

f*m1*m2 (1)

F=``r^2````

Здесь F -величина обеих сил притяжения , m1,m2 - массы притягивающихся материальных точек, r- расстояние между ними ,f- коэфициент пропорциональности,называемой постоянной тяготения (гравитационная постоянная) .Если измерять массу в килограммах, силу ньютонах ,а расстояние в метрах ,то ,как показывают точные измерения ,постоянная тяготения равна 6,672*10^(-11) м^3/(кг*с^2)

На различных этапах космического полёта различное значение может иметь воздействие среды, в которой происходит движение . Силы ,действующие со стороны атмосферы на космический аппарат ,называются аэродинамическими .В межпланетном пространстве важную роль может играть давление солнечного излучения ,которое совершенно незаметно в повседневной жизни.Если масса космического аппарата невелика ,а поверхность ,на которую давят солнечные лучи,значительна,то действием этого фактора можно пренебречь .

Задача N тел и метод численного интегрирования

Пассивное движение космического аппарата в мировом пр-ве проиходит в основном под действием сил притяжений небесных тел - Земли,Луны,Солнца ,планет. Положение этих тел непрерывно изменяется ,причем их движение ,как и движение космического аппарата ,происходит под дейсвием сил всемирного тяготения. Таким образом ,мы сталкиваемся с необходимостью решения задачи о движении большого числа небесных тел (в том числе искуственного небесного тела - космического аппарата) под дейсвием сил взаимного притяжения.Такая задача носит название «задача N тел».

Решение этой задачи в общем случае встречает громадные трудности ,даже задача трех тел решена лишь для нескольких частных случаев. Но в космодинамике задача N тел имеет особый характер . Космический аппарат не оказывает практически никакого влияния на движение небесных тел.Такой случай известен в небесной механике как ограниченная задача N тел .При её решении движение Солнца,Земли ,Луны и планет является заданным ,так как оно прекрасно изученно астрономами и предсказывается ими на много лет вперед.

Расстояния от космического аппарата до Солнца ,Земли ,Луы и планетыв любой момент известны ,массы всех этих тел также известны ,а значит,известны по величине и направлению и ускорения, сообщаемые небесными телами космичекому аппарату. В самом деле ,если масса небесного тела M ,а масса космического аппарата m , то гравитационное ускорение a ,сообщаемое аппарату ,

равно силе притяжения

f*M (2)

``r^2`

Таким образом ,гравитационное ускорение зависит только от расстояния между притягиващимися телами и от массы притягивающего тела,но не зависит от массы притягиваемого тела .

Итак по формуле (2) мы можемвычислить гравитационное ускорение , сообщаемое космическому аппарату каждым небесным телом в отдельности ,а значит , можем вычислить и суммарное ускорение. Зная величину и направление начальной скорости космического аппарата,можно ,учитывая вычисленное ускорение рассчитать положение и скорость аппарата через небольшой промежуток времени ,например через секунду. Для нового момента нужно будет заново вычислить ускорение и затем рассчитать следующее положение аппарата и его скорость и т.д. Таким путем можно проследить все движение космического аппарата . Единственная неточность этого метода заключается в том что приходиться в течение каждого небольшого промежутка времени (шага расчета) считать ускорение при вычислениях неизменным ,в то время как оно переменно .Но точность расчета можно как угодно повысить ,уменьшив шаг .

Описанная процедура называется численным интегрированием .

Невесомость

При невесомости притяжение Земли (или другого небесного тела ) не будут вмешиваться в перемещения предметов относительно корабля .Отсутствуют какие-либо внешние поверхностные силы, действующие на корабль.Наличие же внешних поверхностных сил (сила сопр. среды, силы реакции опоры или подвеса)- обязательное условие сущ. состояния весомости .

Итак , тело, свободно и поступательно движущ. под влиянием одних сил тяготения, всегда нах. в состояниии невесомости.Примеры : корабль в мировом пр-ве , падающий лифт ,человек совершающий прыжок .

Теперь ,когда мы выяснили природу невесомости,уместно будет внести нек. поправки . Мы всегда имели ввиду, что гравитационное ускорение отд. деталей почти (но не в точности ) одинаково , т.к. расстояние отд. деталей от притягивающего тела (напр. Земли) примерно одинаковы .Фактически все эти неточности ничтожны . Перепад гравитационных ускорений (градиент гравитации ) в области пространства , занятой косм. кораблем, ничтожен. Например на высоте 230 км над пов. Земли ,земное гравит. ускорение уменьшается на 2,77*10^(-6) м/c^2 на каждый метр высоты .Когда космичекий корабль длиной 5 м располаг. вдоль линии , напр . на центр Земли его нижний конец получает ускорение на 0,00015 % больше ,чем верхний .

Таким образом ,нарушения невесомости ,вызваные наличием градинта гравитации (т.е. по существу неоднородностью поля тяготения), приводят не к «частичной невесомости» , а к совершенно осбому состоянию . В состоянии свободного полёта в поле тяготения тела несколько (весьма и весьма слабо) растянуты в радиальном направлении .

Центральное поле тяготения

Когда космический аппарат находиться в мировом пространсиве вдали от планет , достаточно учитывать притяжение одного лишь Солнца , потому что гравитациооные ускорения ,сообщаемые планетами (вследствии больших расстояний и относительно малости их масс) , ничтожно малы по сравнению с ускорением ,сообщаемым Солнцем .

Допустим теперь ,что мы изучаем движение космического обьекта вблизи Земли . Ускорение ,сообщаемое этому обьекту Солнцем ,довольно заметно : оно примерно равно ускорению ,сообщаемому Солнцем Земле (около 0,6 см/с^2 ); естественно было бы его учитывать ,если нас интересует движение обькта оносительно Солнца . Но если нас интересует движение космического обьекта относительно Земли ,то притяжение Солнца оказывется срвнительно салосущественным . Оно не будет вмешиваться в это движение аналогично тому ,как притяжение Земли не вмешивается в относительное движение предметов на борту корабля-спутника .То же касается и притяжения Луны, не говоря о притяжениях планет .

Будем считать небесное тело однородным материальным шаром , состоящим из из вложенных друг в друга однородных сферических слоев. Итак , небесное тело притягивает так ,будто бы его масса сосредоточена в его центре . Такое поле тяготения наз. центральным. Будем изучать движение в центральном поле тяготения космического аппарата ,получившего в начальный момент ,когда он находился на расстоянии r°от небесного тела скорость v° .Для дальнейшего воспользуемся законом сохранения мех. энергии , который справедлив для рассматриваемого случая , так как поле тяготения является потенциальным, наличием же негравитационных сил мы прнебрегаем . Кинетическая энергия космического аппарта равна (mV^2)/2 ,где m - масса апарата ,а v - его скорость . Потенциальная энергия в центральном поле тяготения выражается формулой

f*M*m

П=-¾¾¾¾¾,

r

где М- масса притягиващего небесного тела ,а r - расстояние от него до космического аппарата, потенцальная энергия ,будучи отрицательной , увеличивается с удалением от Земли , обращаясь в нуль на бесконечности .Тогда закон сохранения полной механической энергии запишется в следующем виде :

Здесь в левой части равенства стоит сумма кинетической и потоенциальной энергий в начальный момент , а в правой - в любой другой момент .Сократив на m и преобразовав, мы напишем интеграл энергии - важную формулу , выражающую скорость v космического аппарата на любом расстоянии r от центра притяжения:

или

где K=f*M - величина ,характеризующая поле тяготения конкретного небесного тела (гравитационный параметр) .Для Земли K=3,986005*10^5 км^3/c^2 для Солнца K=1,32712438*10^11 км^3/c^2 .

Траектории в цетральном поле тяготения

Путь , описываемый космическим аппаратом в пространстве наз. траекторией .

1. Прямолинейные траектории . Если гачальная скорость равна нулю, то тело начинает падение к центу по прямой линии. Движение по прямой линии бдет и в том случае ,если начальная скорость направлена точно к центру (по радиусу)

2. Эллиптические траектории.

Если начальная скорость на-

правлена не радиаьно,то тра-

ектория ужн не может быть

прямолинейной ,так как иск-

ривляется притяжением Земли .

При этом она лежит целиком

в плоскости , проведенной через

начальное направление ско-

рости и центр Земли .Если начальная скорость не првышает некоторой величины , то траектория предсталяет собой эллипс, причем центр притяжения находится в одном из его фокусов . Если эллиптическая орбита не пересекает поверхности притягивающего небесного тела, космический аппарат является его искусственным спутником.Расстояние между вершинами эллипса называется большой осью. Половина большой оси принимается за среднее расстояние спутника от небесного тела и обозначается буквой a. Скорость v и расстояние r спутника от центра притяжения в любой момент времени (в частности, в начальный) связаны со средним расстоянием а зависимостью .

(4)

Период обращения P искусственного спутника вычисляется по формуле

(5)

или

(5a)

где - определенное число для каждого небесного тела .

Отношение расстояния между фокусами к длине большой оси называется эксцентоиситетом эллипса .

Из формулы (4) видно ,что чем больше начальная скорость,тем больше большая ось орбиты и тем больше ,в соответствии с формулой (5),период обращения .

Ближайшая и наиболее удаленная от центра притяжения точки эллипса называются соответственно перицентром и апоцентром , а прямая линия ,их соединяющая ,линией апсид .

Для конкретных притягивающих центров эти точки носят специальные названия .Так ,если притягивающим телом является Земля ,то перицентр и и апоцентр наз. соответственно перигеем и апогеем ; если Солнце - перигелием и афелием ; если Луна- периселением и апоселением . Скорость в перигее (vп) максимальна ,а апогее (v а) - минимальна ,причем эти две скорости связаны соотношением

vпrп=vаrа ,

где rп rа - расстояния в перигее и апогее. Скорости в перигее и апогее перпендикулярны к направлениям на центр Земли. Для всех остальных точек эллипса верно соотношение

(7)

или

(7а)

Здесь в левых частях стоят произведения расстояний r на трансверальные составляющие скорости vcosa, т.е. на проекции скорости на перпендикуляр к радиальному направлению .

Если умножить левые и правые части равенства (6),(7) или (7а) на массу m космического аппарата , то легко убедиться ,что эти равенства выражают закон сохранения момента количества движения (призведение количества движения mv на величину перпендикуляра, опущенного из точки на линию ,указывающую направление скорости ).Рассмотрим важные случаи ,когда начальные скорости трансверсальны .

При этом ,очевидно, начальная т-ка N0 должна быть перигеем или апогеем .Первое будет в том случае , когда начальная скорость достаточно велика ,чтобы спутник начал удаляться на пути к апогею (1 орбита) .Второе будет в том случае ,когда скорость меньше той же величины (орбита 2) ,при этом возможно падение на Землю (если периней окажется под земной поверхностью или ниже плотных слоев атмосферы ). «Пограничным» является случай , когда начальная скорость такова ,что спутник не поднимается и не опускается ,т.е. описывает круговую орбиту 3 с постоянной круговой скоростью . Радиус круговой орбиты r равен большой полуоси а . Из формулы (4)

Из последней формулы, зная K для Земли ,легко найти круговую скорость для любого расстояния r от её центра или для любой высоты h над земной поверхностью (h=r-r°, где r°=6371 км - средний радиус Земли )

В частности у поверхности Земли круговая скорость равна 7,910км/c - первой косической скорости.

Если записать формулу (4) для начального момента ,а именно :

(9)

то нетрудно заметить ,что с увеличением начальной скорости v0 большая полуось увеливается .Из формулы видно ,что по мере того , как v0^2 приближается к постоянной величине 2K/r0 ,большая полуось а стремится к бесконечности .

3.Параболические траектории . Эллиптическая орбита ,у которой «апогей находится в бесконечности» , не является уже эллипсом . Двигаясь по такой траектории ,космический аппарат бесконечно далеко уходит от центра притяжения ,описывая разомкнутую линию - параболу. По мере удаления аппарата его скорость приближается к нулю.Пиняв в формуле (3) скорость в бесконечности равной нулю (r=¥, v=0) , мы найдем такую величину начальной скорости v0 , которая обеспечивает возможность рассматриваемого движения .

Получим

или

(10)

Вычисленная по формуле (10) величина называется параболической скоростью. Получив такую скорость ,космический аппарат движется по параболе и уже не возвращается к центру тяготения .Когда скорость (10) сообщается в вертикальном направлении, траекторией является прямая линия, но и в этом случае скорость называют параболической .Между скоростью освобождения и круговой скоростью в любой точке существует простая зависимость

(11)

Значение скорости освобождения у поверхности Земли носит название второй космической скорости и составляет 11,186 км/c. На высоте h=200 км скорость освобождения сост. 11,015 км/c .

Воспользовавшись формулой (10) ,мы можем теперь записать основную формулу (3) для скорости в центральном поле тяготения так :

4.Гиперболические траектории.Если космический аппарат получит скорость v0 , превышающую параболическую ,то он также «достигнет бесконечности» ,но при этом будет двигаться уже по линии иного рода - гиперболе.При этом скорость апппарата в бесконечности (v¥)уже не будет равна нулю. Физически это означает ,что по мере удаления аппарата его скорость будет непрерывно падать ,но не сможет стать меньше величины v¥ ,которую можно найти ,приняв в формуле (12) r=¥.Получим

Величину v¥ назывют по-разному : остаточная скорость, гиперболический избыток скорости и т.д.

Гиперболическая траектория вдали от центра притяжения становится почти неотличимой от двух прямых линий ,называемых асимптотами гиперболы .На большом расстоянии от центра притяжения гтперболическую траекторию приближенно можно считать прямолинейной.Для гиперболических и параболических орбит справдливы как и для эллиптичеких орбит ,формулы (7) и (7а).

В заключение заметим,что пассивное движение в центральном поле тяготения часто называют кеплеровским движением, а эллиптичекие, параболические и гиперболичекие траектории обьединяются общим названием кеплеровских орбит.Всегда важно помнить ,что любая кеплерова орбита расположена в плоскости , проходящей через центр притяжения.Положение этой плоскости в пространстве не изменяется.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно