Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Свойства усредненной функции с сильной осцилляцией

Тип Реферат
Предмет Математика
Просмотров
975
Размер файла
291 б
Поделиться

Ознакомительный фрагмент работы:

Свойства усредненной функции с сильной осцилляцией

Министерство образования Российской Федерации

Башкирский государственный педагогический университет

Кафедра математического анализа

Дипломная квалификационная работа

Автор: Гарипов Ильгиз.

Тема: Свойства усредненной функции с сильной осцилляцией.


К защите допущен ____________

Заведующий кафедрой к.ф. м. н. доцент Сафаров Т.Г.
Руководитель д.физ-мат. наук. профессор Султанаев Я.Т.


Уфа 2001


Содержание

Стр.

Введение 3

§ 1 Свойства функции . 4

§ 2 Свойства функции и ее производных. 5

2.1 5

2.2 6

2.3 где a>0 7

2.4 9

§ 3 Поведение 11

3.1 11

3.2 11

3.3 12

3.4 13

§ 4 Поведение 14

4.1 14

4.2 15

4.3 15

4.4 16

Заключение 17

Литература 18


Введение

Пусть произвольная функция, определенная на , и при

Введем в рассмотрение функцию с помощью следующего равенства:

(1)

Назовем эту функцию усреднением функции

Это название оправдано так как из (1) и теоремы о среднем для интегралов можем заключить


§ 2 Свойства функции .

1. Если , при , то при
Доказательство:
, , " N >0, :

2. (2)

3. (3)

Дифференцируя формулу (1) по dx получаем

(4)

(5)


§ 2 Свойства функции и ее производных.

I) Рассмотрим вид функции для случаев когда :

2.1

2.2


2.3 где a>0;

Разделим интеграл на два интеграла и вычислим их отдельно.

Второй интеграл не оказывает влияния на первый, так как при функция стремится к 0.

Доказательство:

Рассматривая второй интеграл, мы получаем:

Рассматривая первый интеграл, получаем:

Последние два слагаемых полученных при интегрировании содержат в произведении , то есть при возрастании x эти слагаемые будут очень быстро уменьшатся и весь интеграл при становится очень малым по сравнению с первой частью. Поэтому можно считать что при

Следовательно:


2.4.

Наложить на ограничение, такое чтобы присутствие не влияло на поведение функции.

Рассматривая полученное выражение можно заметить что

становится пренебрежительно малым по отношению к остальной части

как только . Ограничение №1

В тоже время

Становится бесконечно малым как только . Ограничение №2

Раскрывая в оставшейся части скобки, по Биному Ньютона получаем, что

должен быть очень малым при то есть

так как ограниченная функция, к 0 должен стремится .

Ограничение №3

Учитывая ограничения 1, 2, 3 получаем:

Следовательно, ограничение на удовлетворяющее поставленной задаче, при котором присутствие не влияет на поведение функции .


§ 3 Рассмотрим поведение функции для случаев:

3.1)

3.2)


3.3)

Вычислим отдельно интегральное выражение, стоящее в числителе:

=

=

рассматривая пределы при видим что на поведение функции оказывает влияние только главный член

Поведение данной функции при эквивалентно поведению функции

(*)

Вычислим интеграл в знаменателе:

=

(**)

Учитывая (*)и (**) получаем

Следовательно, по формуле (2) получаем

3.4

Отдельно вычислим числитель и знаменатель:

По ранее доказанному в пункте 2.4 мы можем сказать что второй интеграл не оказывает влияния на поведение функции. Поэтому мы можем утверждать, что числитель эквивалентен выражению:

Вычислим знаменатель:

Разделив интеграл на 2 интеграла, мы получаем:

По пункту 2.4 можем вывести что второй интеграл не влияет на поведение функции при

Следовательно, знаменатель:


§4. Рассмотрим поведение второй производной

Для облегчения вычислений введем обозначения:

При этом формула для примет вид (6)

4.1

Виду того, что d(x) очень мал то будет несравним с d(x) т.е.


4.2

используя равенства, полученные в пункте 2.2 и 3.2, преобразуя данное равенство, приходим к выражению:

(Все выкладки приводить не буду в виду их громоздкости и сложности для восприятия. Добавлю только что все выкладки, примененные в данном пункте полностью повторяют ограничения и эквивалентные выражения, использованные в пунктах 2.2 и 3.2).

Отсюда следует что

4.3

Используя данные, полученные в п.3.3 получаем что

Возвращаясь к п. 3.3 находим:

Вычисляя по формуле 6, получаем:

и

4.4

и


Заключение

В результате проведенного исследования поведения усредненной функции в случае осциллирующих коэфициентов, получены данные приведенные в следующей таблице:


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 368 оценок star star star star star
среднее 4.9 из 5
ФГБО ВО БрГУ
Анна, большая молодец, заказ выполнен досрочно и без замечаний, рекомендую
star star star star star
РГЭУ РИНХ
Очень хороший реферат, было все подробно описано. в общем то что надо! спасибо)
star star star star star
РТА СПБ
Огромное спасибо за качественно выполненную работу и оформленную в соответствии с требован...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Выполнить контрольную по Английскому. С-07505

Контрольная, Английский язык

Срок сдачи к 17 янв.

только что

Тема: Воспитание дружеских взаимодействий дошкольников

Курсовая, Педагогика

Срок сдачи к 16 янв.

1 минуту назад

Выполнение 6 работ в программе Statistica

Контрольная, Программные статистические комплексы

Срок сдачи к 20 февр.

1 минуту назад

Решить 3 задачи.

Решение задач, Физика

Срок сдачи к 22 янв.

1 минуту назад
1 минуту назад

Контрольная под дисциплине Механика жидкости и газа

Контрольная, Механика жидкости и газа

Срок сдачи к 20 янв.

1 минуту назад

Производственная практика

Отчет по практике, Психология и педагогика

Срок сдачи к 18 янв.

2 минуты назад
2 минуты назад

Выполнить контрольную по Английскому. С-07504

Контрольная, Английский язык

Срок сдачи к 17 янв.

2 минуты назад

Решить задачи

Решение задач, Международное право

Срок сдачи к 16 янв.

2 минуты назад

Написать отзыв по статье на 1,5-2 листа

Другое, Дефектология

Срок сдачи к 18 янв.

3 минуты назад

Контрольная работа "Расчёт теплопритоков в охлаждаемую камеру"

Контрольная, Теплотехника и хладотехника

Срок сдачи к 19 янв.

4 минуты назад

3 задачи

Решение задач, Теоретическая механика

Срок сдачи к 18 янв.

4 минуты назад

Теплофизика

Решение задач, Теплофизика

Срок сдачи к 15 янв.

5 минут назад

Лабораторная работа № 1.1 Модуль: Основы логического мышления

Решение задач, Введение в специальность, логика

Срок сдачи к 15 янв.

5 минут назад

Том каулитц

Контрольная, Математика

Срок сдачи к 18 янв.

6 минут назад

сделать лабораторные работы

Лабораторная, Цифровая культура в профессиональной деятельности, культурология

Срок сдачи к 25 янв.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно