Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Оптимизация организационных решений

Тип Реферат
Предмет Математика
Просмотров
888
Размер файла
640 б
Поделиться

Ознакомительный фрагмент работы:

Оптимизация организационных решений

КОНТРОЛЬНАЯ РАБОТА

по дисциплине

« ОПТИМИЗАЦИЯ ОРГАНИЗАЦИОННЫХ РЕШЕНИЙ»


Задание №1

Решение задачи об оптимальном направлении капиталовложений в строительную отрасль и оптимизации поставки строительных грузов

Определить наиболее экономичный вариант прироста мощности (строительства или реконструкции) и одновременно рассчитать оптимальный план перевозок строительной продукции до потребителя.

Решение

Составим базисные планы:

а) метод северо-западного угла


Значение целевой функции:

L1 = 160 х 15 + 20 х 3 + 60 х 10 + 180 х 5 + 40 х 16 + 40 х 0 =

= 2 400 + 60 + 600 + 900 + 640 + 0 = 4 600 у. е.

б) метод двойного предпочтения

Значение целевой функции:

L2 = 180 х 3 + 160 х 3 + 60 х 5 + 20 х 0 + 40 х 5 + 20 х 13 + 20 х 0 =

= 540 + 480 + 300 + 0 + 200 + 260 + 0 = 1 780 у. е.

в) метод аппроксимации Фогеля


Значение целевой функции:

L3 = 160 х 3 + 180 х 3 + 20 х 10 + 60 х 5 + 40 х 5 + 40 х 0 =

= 480 + 540 + 200 + 300 + 200 + 0 = 1 720 у. е.

Проведем проверку матрицы на вырождение:

N – число занятых клеток матрицы, N = 6.

N = m + n – 1 = 4 + 4 – 1 = 7.

6 ≠ 7.

Следовательно, матрица – вырожденная, поэтому в одну из свободных ячеек в зоне вырождения вводим условную нулевую поставку груза.


Оптимальный план находим на основании базисного плана, построенного методом аппроксимации Фогеля, так как этот план имеет минимальную целевую функцию.

Проверим матрицу на оптимальность с помощью потенциалов строк u и столбцов v.

Потенциалы определим по занятым клеткам матрицы, тем самым соблюдая условие оптимальности (cij = uij + vij).


Произведем проверку свободных клеток базисного плана на оптимальность.

Коды свободных клеток

Δ = cij – (vij + uij)

Примечание

A-I

15 – (1 + 0) = 15

>0

A-II

18 – (8 + 0) = 10

>0

A-IV

0 – (-2 + 0) = 2

>0

B-I

12 – (1 – 3) = 14

>0

B-III

16 – (3 – 3) = 16

>0

B-IV

0 – (-2 + 2) = 0

=0

Г-I

17 – (1 + 2) = 14

>0

Г-II

13 – (8 + 2) = 3

>0

Г-III

15 – (3 + 2) = 10

>0

В данном случае все значения Δ ≥ 0, следовательно, составленный план неоптимален, переходим к улучшенному плану перевозок. В этом случае среди незагруженных клеток, для которых Δ ≥ 0, находим клетку с наибольшей величиной превышения стоимости (B-III).

Строим замкнутый контур, начиная перемещаться из потенциальной клетки.

Контур распределения:


Составим новый план распределения.

Его целевая функция:

L4 = 160 х 3 + 180 х 3 + 60 х 10 + 20 х 5 + 40 х 16 + 40 х 0 =

= 480 + 540 + 600 + 100 + 640 + 0 = 2 360 у. е.

Проверяем полученную матрицу на оптимальность.

Коды свободных клеток

Δ = cij – (vij + uij)

Примечание

A-I

15 – (1 + 0) = 15

>0

A-II

18 – (8 + 0) = 10

>0

A-IV

0 – (-2 + 0) = 2

>0

B-I

12 – (1 – 3) = 14

>0

B-II

5 – (8 + 13) = -16

<0

B-IV

0 – (-2 + 13) = -11

<0

Г-I

17 – (1 + 2) = 14

>0

Г-II

13 – (8 + 2) = 3

>0

Г-III

15 – (3 + 2) = 10

>0


Наибольшее превышение стоимости наблюдаем в клетке А-I.

Контур распределения:

Новый план распределения:


Его целевая функция:

L4 = 160 х 15 + 20 х 3 + 60 х 10 + 180 х 5 + 40 х 16 + 40 х 0 =

= 2 400 + 60 + 600 + 900 + 640 + 0 = 4 600 у. е.

Проверяем полученную матрицу на оптимальность.

Коды свободных клеток

Δ = cij – (vij + uij)

Примечание

A-II

18 – (22 + 0) = -4

<0

A-III

3 – (17 + 0) = -14

<0

A-IV

0 – (12 + 0) = -12

<0

B-I

12 – (15 + 13) = -16

<0

B-II

5 – (22 + 13) = -30

<0

B-IV

0 – (12 + 13) = -25

<0

Г-I

17 – (15 - 12) = 14

>0

Г-II

13 – (22 - 12) = 3

>0

Г-III

15 – (17 - 12) = 10

>0

Данный план распределения продукции является наиболее эффективным из представленных, хотя не до конца оптимальным.

Вывод

Поскольку в оптимальном плане прирост мощности 40 тыс. у. е. продукции за счет строительства отнесен на фиктивного потребителя, то строительство нового цеха или пристройку цеха к действующему следует считать нецелесообразным, и капитальные вложения необходимо направить на реконструкцию действующего предприятия.

Задание №2

Применение симплекс-метода для оптимальной организации

ремонтно-строительных работ

Определить максимальное количество квартир в домах кирпичных и крупнопанельных, которые можно отремонтировать из имеющихся ресурсов.

Ресурсы

Потребность в ресурсах на одну квартиру

Наименование

Количество

кирпичный дом

панельный дом

Арматура, т

900

0,6

1,3

Пиломатериалы, м3

520

0,8

0,3

Цемент, т

7 000

5

9

Керамическая плитка, тыс. шт.

400

0,5

--

Трудозатраты,

чел. дн.

55 000

70

50

Решение

Для решения данной задачи применим симплекс-метод.

Обозначим:

Х1 – искомое количество квартир в кирпичном доме;

Х2 – искомое количество квартир в панельном доме.

Целевая функция:

L = Х1 + Х2 max

Ограничениями будут неравенства, полученные на основании исходных данных:

1. Арматура 0,6Х1 + 1,3 Х2 ≤ 900;

2. Пиломатериалы 0,8Х1 + 0,3 Х2 ≤ 520;

3. Цемент 1 + 9Х2 ≤ 7 000;

4. Керамическая плитка 0,5Х1 ≤ 400;

5. Трудозатраты 70Х1 + 50Х2 ≤ 55 000;

6. Х1 ≥ 0;

7. Х2 ≥ 0.

Поскольку имеется только два неизвестных, то применим геометрическое решение. Для удобства построений преобразуем не равенства.

1. 1 + 13 Х2 ≤ 9 000;

2. 1 + 3 Х2 ≤ 5 200;

3. 1 + 9Х2 ≤ 7 000;

4. 1 ≤ 4 000;

5. 1 + 5Х2 ≤ 5 500;

6. Х1 ≥ 0;

7. Х2 ≥ 0.

Геометрически ограничения неравенств выражаются в виде открытых полуплоскостей, ограниченных осями координат и линиями, описываемыми равенствами, полученными из выражений ограничений:

1. 1 + 13 Х2 = 9 000;

2. 1 + 3 Х2 = 5 200;

3. 1 + 9Х2 = 7 000;

4. 1 = 4 000;

5. 1 + 5Х2 = 5 500.

Нанесем эти линии на график.


В целом условиям неравенств удовлетворяет заштрихованная область. Оптимальное решение находится на контуре этой фигуры в одной из узловых точек и определяется совместным рассмотрением выражений:

L = Х1 + Х2 max

1 + 13 Х2 = 9 000;

1 + 3 Х2 = 5 200;

1 + 9Х2 = 7 000;

1 = 4 000;

1 + 5Х2 = 5 500.

Возрастание целевой функции направлено слева вверх под углом 45°, и последней точкой в допустимой области будет точка 1 или 2.


Точка 1 получена пересечением прямых, описываемых равенствами:

1 + 13 Х2 = 9 000;

1 + 5Х2 = 5 500.

Решая эти равенства, найдем координаты точки 1: Х1 = 200; Х2 = 600.

Аналогично найдем координаты точки 2 из выражений:

1 + 5Х2 = 5 500;

1 + 3 Х2 = 5 200.

Координаты точки 2: Х1 = 498; Х2 = 406.

Найдем, какая из указанных точек дает большее значение целевой функции.

L1 = Х1 + Х2 = 200 + 600 = 800;

L2 = Х1 + Х2 = 498 + 406 = 904.

Оптимальной является точка 2, дающая 498 квартир в кирпичных домах и 406 в панельных. При этом будут полностью исчерпаны такие ресурсы как пиломатериалы и трудозатраты.

Использование остальных ресурсов найдем, решая вышеуказанные равенства при зафиксированных значениях Х1 = 498; Х2 = 406.

0,6 х 498 + 1,3 х 406 = 299 + 528 = 827 (арматура), неиспользовано 73 т арматуры.

5 х 498 + 9 х 406 = 2 490 + 3 654 = 6 144 (цемент), неиспользовано 856 т.

0,5 х 498 = 249 тыс. шт. (керамическая плитка), неиспользовано 151 тыс. шт.


Полученные результаты занесем в таблицу:

Ресурсы

Количество ресурсов

Наименование

в наличии

использованных

неиспользованных

Арматура, т

900

827

73

Пиломатериалы, м3

520

520

-

Цемент, т

7 000

6 144

856

Керамическая плитка, тыс. шт.

400

249

151

Трудозатраты,

чел. дн.

55 000

55 000

--

Вывод: Максимальное количество домов, которые можно отремонтировать, используя данные ресурсы – 498 шт. (кирпичные) и 406 шт. (панельные). При ремонте пиломатериалы и трудозатраты используются полностью, остальные ресурсы – с остатком.

Задание №3

Применение методов динамического программирования

(принципа оптимальности Р. Беллмана)

при календарном планировании в строительстве

Выбрать такую очередность включения объектов в строительный поток, чтобы длина суммарного пути перебазирования оказалась минимальной.

Исходные данные – расстояние между пунктами, км

Индекс пунктов (объектов)

А0

А1

А2

А3

А4

А0

0

20

5

10

40

А1

20

0

10

25

30

А2

5

10

0

35

15

А3

10

25

35

0

50

А4

40

30

15

50

0

Составим таблицу вариантов, состоящих лишь из трех участков перебазирования. Сгруппируем эти варианты по одинаковым объектам, стоящим на последнем месте.

Вариант

Суммарное расстояние, км

Вариант

Суммарное расстояние, км

А0 А2 А3 А1

А0 А3 А2 А1

5 + 35 + 25 = 65

10 + 35 + 25 = 70

А0 А1 А2 А3

А0 А2 А1 А3

20 + 10 + 35 = 65

5 + 10 + 25 = 40

А0 А2 А4 А1

А0 А4 А2 А1

5 + 15 + 30 = 50

40 + 15 + 10 = 65

А0 А1 А4 А3

А0 А4 А1 А3

20 + 30 + 50 = 100

40 + 30 + 25 = 95

А0 А3 А4 А1

А0 А4 А3 А1

10 + 50 + 30 = 90

40 + 50 + 25 = 115

А0 А2 А4 А3

А0 А4 А2 А3

5 + 15 + 50 = 70

40 + 15 + 35 = 90

А0 А1 А3 А2

А0 А3 А1 А2

20 + 25 + 35 = 80

10 + 25 + 10 = 45

А0 А1 А2 А4

А0 А2 А1 А4

20 + 10 + 15 = 45

5 + 10 + 30 = 45

А0 А1 А4 А2

А0 А4 А1 А2

20 + 30 + 15 = 65

40 + 30 + 10 = 80

А0 А1 А3 А4

А0 А3 А1 А4

20 + 25 + 50 = 95

10 + 25 + 30 = 65

А0 А3 А4 А2

А0 А4 А3 А2

10 + 50 + 15 = 75

40 + 50 + 35 = 125

А0 А2 А3 А4

А0 А3 А2 А4

5 + 35 + 50 = 90

10 + 35 + 15 = 60


Из каждой пары вариантов выберем наиболее перспективные (с меньшим значением). Затем развиваем и сопоставляем лишь перспективные варианты.

Вариант

Суммарное расстояние, км

Вариант

Суммарное расстояние, км

А0 А2 А3 А1 А4

А0 А2 А4 А1 А3

А0 А3 А4 А1 А2

А0 А3 А1 А2 А4

А0 А1 А4 А2 А3

А0 А3 А4 А2 А1

65 + 30 = 95

50 + 25 = 75

90 + 10 = 100

45 + 15 = 60

65 + 35 = 110

75 + 10 = 85

А0 А2 А1 А3 А4

А0 А4 А1 А3 А2

А0 А2 А4 А3 А1

А0 А2 А1 А4 А3

А0 А3 А1 А4 А2

А0 А3 А2 А4 А1

40 + 50 = 90

95 + 35 = 130

70 + 25 = 95

45 + 50 = 95

65 + 15 = 80

60 + 30 = 90

Составляем таблицу, в которую внесем перспективные варианты из предыдущей таблицы и добавим к каждому из них А0 (возвращение мехколонны на исходную базу).

Вариант

Суммарное расстояние, км

А0 А2 А4 А1 А3 А0

А0 А3 А1 А2 А4 А0

А0 А3 А4 А2 А1 А0

А0 А3 А1 А4 А2 А0

75 + 10 = 85

60 + 40 = 100

85 + 20 = 105

80 + 5 = 85

Таким образом, устанавливаем, что есть два равноценных оптимальных варианта последовательности строительства объектов.

Задание №4

Оптимизация очередности строительства объектов

в неритмичных потоках

Определить оптимальную очередность строительства нескольких объектов, при которой достигается минимальная общая продолжительность строительства, а также величину общей продолжительности строительства при исходной и оптимальной очередности строительства объектов.

Выделяем поток №3 как поток наибольшей продолжительности. Затем по каждому объекту находим общее рабочее время, предшествующее потоку наибольшей продолжительности и общее рабочее время, последующее за потоком наибольшей продолжительности.

В третью строку под матрицей записываем со своим знаком разницу между продолжительностью работы на данном объекте последней и первой бригад.


На основе данных дополнительных строк устанавливается рациональная очередность строительства объектов из следующих соображений:

а) на первом месте располагается объект с наибольшим значением Σапос. Остальные объекты располагаются так, чтобы Σапр постепенно возрастало, а Σапос снижалась к концу матрицы;

б) на первом месте располагается объект с наибольшим значением m - а1), на последнем – с минимальным значением m - а1); остальные объекты располагаются так, чтобы m - а1) изменялось постепенно от максимального значения к минимальному.


Принятая очередность строительства объектов по п. а:

Принятая очередность строительства объектов по п. б:


Найдем общую продолжительность строительства комплекса:

а) при исходной очередности объектов

Т1 = (8 + 8 + 5 + 0 + 4) + (6 + 5 + 4) + (5 + 4) = 49;

б) при очередности объектов 5-2-1-4-3

Т2 = (4 + 8 + 8 + 0 + 5) + (5 + 2 + 0) + (2 + 0) = 34;

в) при очередности объектов 4-5-3-2-1

Т3 = (0 + 4 + 5 + 8 + 8) + (2 + 1 + 9) + (1 + 9) = 47.

Наименьшую продолжительность имеет очередность объектов 5-2-1-4-3.

Задание №5

Оптимизация сетевого графика по рабочим ресурсам

и по срокам строительства

Решить оптимизационные задачи управления строительством по сетевым моделям.

Тобщ = 45 дней

Данную сетевую модель можно оптимизировать. Для этого на критические пути увеличиваем количество рабочих, снимая их с менее загруженных участков. Таким образом, сокращаются сроки выполнения работ.

Тобщ. = 41 день


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно