Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Математическое программирование 2

Тип Реферат
Предмет Математика
Просмотров
965
Размер файла
218 б
Поделиться

Ознакомительный фрагмент работы:

Математическое программирование 2

Математическое программирование

1. Общая задача линейного программирования (ЗЛП):

Здесь (1) называется системой ограничений , ее матрица имеет ранг r £ n, (2) - функцией цели (целевой функцией). Неотрицательное решение (х10, x20, ... , xn0) системы (1) называется допустимым решением (планом) ЗЛП. Допустимое решение называется оптимальным, если оно обращает целевую функцию (2) в min или max (оптимум).

2. Симплексная форма ЗЛП. Для решения ЗЛП симплекс - методом необходимо ее привести к определенной (симплексной) форме:

(2`) f+cr+1xr+1 + ... + csxs + ... + cnxn = b0 ® min

Здесь считаем r < n (система имеет бесчисленное множество решений), случай r = n неинтересен: в этом случае система имеет единственное решение и если оно допустимое, то автоматически становится оптимальным.

В системе (1`) неизвестные х1, х2, ... , хr называются базисными (каждое из них входит в одно и только одно уравнение с коэффициентом +1), остальные хr+1, ... , xn - свободными. Допустимое решение (1`) называется базисным (опорным планом), если все свободные неизвестные равны 0, а соответствующее ему значение целевой функции f(x10, ... , xr0,0, ... ,0) называется базисным.

В силу важности особенностей симплексной формы выразим их и словами:

а) система (1`) удовлетворяет условиям :

1) все ограничения - в виде уравнений;

2) все свободные члены неотрицательны, т.е. bi ³ 0;

3) имеет базисные неизвестные;

б) целевая функция (2`) удовлетворяет условиям :

1) содержит только свободные неизвестные;

2) все члены перенесены влево, кроме свободного члена b0;

3) обязательна минимизация (случай max сводится к min по формуле max f = - min(-f)).

3) Матричная форма симплекс-метода. Симплексной форме ЗЛП соответствует симплекс - матрица :

1 0 ... 0 ... 0 a1,r+1 ... a1s ... a1n b1

0 1 ... 0 ... 0 a2,r+1 ... a2s ... a2n b2

.................................................................

0 0 ... 1 ... 0 ai,r+1 ... ais ... ain bi

.................................................................

0 0 ... 0 ... 1 ar,r+1 ... ars ... arn br

0 0 ... 0 ... 0 cr+1 ... cs ... cn b0

Заметим, что каждому базису (системе базисных неизвестных ) соответствует своя симплекс - матрица , базисное решение х = (b1,b2, ... ,br, 0, ... ,0) и базисное значение целевой функции f(b1,b2, ... ,br, 0, ... ,0) = b0 (см. Последний столбец !).

Критерий оптимальности плана . Если в последней (целевой) строке симплекс-матрицы все элементы неположительны, без учета последнего b0, то соответствующий этой матрице план оптимален,

т.е. сj £ 0 (j = r+1, n) => min f (b1, ... ,b2,0, ... ,0) = b0.

Критерий отсутствия оптимальности. Если в симплекс-матрице имеется столбец (S-й), в котором последний элемент сs > 0, a все остальные элементы неположительны, то ЗЛП не имеет оптимального плана, т.е. сs > 0, ais £ 0 ( i= 1,r ) => min f = -¥.

Если в симплекс-матрице не выполняются оба критерия, то в поисках оптимума надо переходить к следующей матрице с помощью некоторого элемента ais > 0 и следующих преобразований (симплексных):

1) все элементы i-й строки делим на элемент a+is;

2) все элементы S-го столбца, кроме ais=1, заменяем нулями;

3) все остальные элементы матрицы преобразуем по правилу прямоугольника, что схематично показано на фрагменте матрицы и дано в формулах:

akl` = akbais - ailaks = akl - ailaks;

ais ais

bk` = bkais - biaks; cl` = clais - csail

ais ais

Определение. Элемент ais+ называется разрешающим, если преобразование матрицы с его помощью обеспечивает уменьшение (невозрастание) значения, целевой функции; строка и столбец, на пересечении которых находится разрешающий элемент, также называются разрешающими.

Критерий выбора разрешающего элемента. Если элемент ais+ удовлетворяет условию

bi = min bk

ais0 aks0+

где s0 - номер выбранного разрешающего столбца, то он является разрешающим.

4. Алгоритм симплекс-метода (по минимизации).

1) систему ограничений и целевую функцию ЗЛП приводим к симплексной форме;

2) составим симплекс-матрицу из коэффициентов системы и целевой функции в симплексной форме;

3) проверка матрицы на выполнение критерия оптимальности; если он выполняется, то решение закончено;

4) при невыполнении критерия оптимальности проверяем выполнение критерия отсутствия оптимальности; в случае выполнения последнего решение закончено - нет оптимального плана;

5) в случае невыполнения обоих критериев находим разрешающий элемент для перехода к следующей матрице, для чего :

а) выбираем разрешающий столбец по наибольшему из положи тельных элементов целевой строки;

б) выбираем разрешающую строку по критерию выбора разрешающего элемента; на их пересечении находится разрешающий элемент;

6) c помощью разрешающего элемента и симплекс-преобразований переходим к следующей матрице;

7) вновь полученную симплекс-матрицу проверяем описанным выше способом (см. п. 3)

Через конечное число шагов, как правило получаем оптимальный план ЗЛП или его отсутствие

Замечания.

1) Если в разрешающей строке (столбце) имеется нуль, то в соответствующем ему столбце (строке) элементы остаются без изменения при симплекс-преобразованиях.

2) преобразования - вычисления удобно начинать с целевой строки; если при этом окажется, что выполняется критерий оптимальности, то можно ограничиться вычислением элементов последнего столбца.

3) при переходе от одной матрицы к другой свободные члены уравнений остаются неотрицательными; появление отрицатель
ного члена сигнализирует о допущенной ошибке в предыдущих вычислениях.

4) правильность полученного ответа - оптимального плана - проверяется путем подстановки значений базисных неизвестных в целевую функцию; ответы должны совпасть.

5. Геометрическая интерпретация ЗЛП и графический метод решения (при двух неизвестных)

Система ограничений ЗЛП геометрически представляет собой многоугольник или многоугольную область как пересечение полуплоскостей - геометрических образов неравенств системы. Целевая функция f = c1x1 + c2x2 геометрически изображает семейство параллельных прямых, перпендикулярных вектору n (с12).

Теорема. При перемещении прямой целевой функции направлении вектора n значения целевой функции возрастают, в противоположном направлении - убывают.

На этих утверждениях основан графический метод решения ЗЛП.

6. Алгоритм графического метода решения ЗЛП.

1) В системе координат построить прямые по уравнениям, соответствующим каждому неравенству системы ограничений;

2) найти полуплоскости решения каждого неравенства системы (обозначить стрелками);

3) найти многоугольник (многоугольную область) решений системы ограничений как пересечение полуплоскостей;

4) построить вектор n (с12) по коэффициентам целевой функции f = c1x1 + c2x2;

5) в семействе параллельных прямых целевой функции выделить одну, например, через начало координат;

6) перемещать прямую целевой функции параллельно самой себе по области решения, достигая max f при движении вектора n и min f при движении в противоположном направлении.

7) найти координаты точек max и min по чертежу и вычислить значения функции в этих точках (ответы).

7. Постановка транспортной задачи.

Приведем экономическую формулировку транспортной задачи по критерию стоимости:

Однородный груз, имеющийся в m пунктах отправления (производства) А1, А2, ..., Аm соответственно в количествах а1, а2, ..., аm единиц, требуется доставить в каждый из n пунктов назначения (потребления) В1, В2, ..., Вn соответственно в количествах b1, b2, ..., bn единиц. Стоимость перевозки (тариф) единицы продукта из Ai в Bj известна для всех маршрутов AiBj и равна Cij (i=1,m; j=1,n). Требуется составить такой план перевозок, при котором весь груз из пунктов отправления вывозиться и запросы всех пунктов потребления удовлетворяются (закрытая модель), а суммарные транспортные расходы минимальны.

Условия задачи удобно располагать в таблицу, вписывая в клетки количество перевозимого груза из Ai в Bj груза Xij > 0, а в маленькие клетки - соответствующие тарифы Cij:

8. Математическая модель транспортной задачи.

Из предыдущей таблицы легко усматривается и составляется математическая модель транспортной задачи для закрытой модели

Число r = m + n - 1, равное рангу системы (1), называется рангом транспортной задачи. Если число заполненных клеток (Xij ¹ 0) в таблице равно r, то план называется невырожденным, а если это число меньше r, то план вырожденный - в этом случае в некоторые клетки вписывается столько нулей (условно заполненные клетки), чтобы общее число заполненных клеток было равно r.

Случай открытой модели Σаi ¹ Σbj легко сводится к закрытой модели путем введения фиктивного потребителя Bn+1 c потребностью bn+1=Σai-Σbj, либо - фиктивного поставщика Аm+1 c запасом am+1=Σbj-Σai ; при этом тарифы фиктивных участников принимаются равными 0.

9. Способы составления 1-таблицы (опорного плана).

I. Способ северо-западного угла (диагональный). Сущность способа заключается в том, что на каждом шаге заполняется левая верхняя клетка (северо-западная) оставшейся части таблицы, причем максимально возможным числом: либо полностью вывозиться груз из Аi, либо полностью удовлетворяется потребность Bj. Процедура продолжается до тех пор, пока на каком-то шаге не исчерпаются запасы ai и не удовлетворяются потребности bj . В заключение проверяют, что найденные компоненты плана Xij удовлетворяют горизонтальным и вертикальным уравнениям и что выполняется условие невырожденности плана.

II. Способ наименьшего тарифа. Сущность способа в том, что на каждом шаге заполняется та клетка оставшейся части таблицы, которая имеет наименьший тариф; в случае наличия нескольких таких равных тарифов заполняется любая из них. В остальном действуют аналогично предыдущему способу.

10. Метод потенциалов решения транспортной задачи.

Определение: потенциалами решения называются числа ai®Ai, bj®Bj, удовлетворяющие условию ai+bj=Cij (*) для всех заполненных клеток (i,j).

Соотношения (*) определяют систему из m+n-1 линейных уравнений с m+n неизвестными, имеющую бесчисленное множество решений; для ее определенности одному неизвестному придают любое число (обычно a1=0), тогда все остальные неизвестные определяются однозначно.

Критерий оптимальности. Если известны потенциалы решения X0 транспортной задачи и для всех незаполненных клеток выполняются условия ai+bj £ Ci j, то X0 является оптимальным планом транспортной задачи.

Если план не оптимален, то необходимо перейти к следующему плану (таблице) так, чтобы транспортные расходы не увеличились.

Определение: циклом пересчета таблицы называется последовательность клеток, удовлетворяющая условиям:

1) одна клетка пустая, все остальные занятые;

2) любые две соседние клетки находятся в одной строке или в одном столбце;

3) никакие 3 соседние клетки не могут быть в одной строке или в одном столбце .

Пустой клетке присваивают знак « + », остальным - поочередно знаки « - » и « + ».

Для перераспределения плана перевозок с помощью цикла перерасчета сначала находят незаполненную клетку (r, s), в которой ar+bs>Crs, и строят соответствующий цикл; затем в минусовых клетках находят число X=min{Xij}. Далее составляют новую таблицу по следующему правилу:

1) в плюсовые клетки добавляем X;

2) из минусовых клеток отнимаем Х;

3) все остальные клетки вне цикла остаются без изменения.

Получим новую таблицу, дающее новое решение X, такое, что f(X1) £ f(X0); оно снова проверяется на оптимальность через конечное число шагов обязательно найдем оптимальный план транспортной задачи, ибо он всегда существует.

11. Алгоритм метода потенциалов.

1) проверяем тип модели транспортной задачи и в случае открытой модели сводим ее к закрытой;

2) находим опорный план перевозок путем составления 1-й таблицы одним из способов - северо-западного угла или наименьшего тарифа;

3) проверяем план (таблицу) на удовлетворение системе уравнений и на невыражденность; в случае вырождения плана добавляем условно заполненные клетки с помощью « 0 »;

4) проверяем опорный план на оптимальность, для чего:

а) составляем систему уравнений потенциалов по заполненным клеткам;

б) находим одно из ее решений при a1=0;

в) находим суммы ai+bj=C¢ij («косвенные тарифы») для всех пустых клеток;

г) сравниваем косвенные тарифы с истинными: если косвенные тарифы не превосходят соответствующих истинных(C¢ij £ Cij) во всех пустых клетках, то план оптимален (критерий оптимальности). Решение закончено: ответ дается в виде плана перевозок последней таблицы и значения min f.

Если критерий оптимальности не выполняется, то переходим к следующему шагу.

5) Для перехода к следующей таблице (плану):

а) выбираем одну из пустых клеток, где косвенный тариф больше истинного (C¢ij= ai+bj > Cij );

б) составляем цикл пересчета для этой клетки и расставляем знаки « + », « - » в вершинах цикла путем их чередования, приписывая пустой клетке « + »;

в) находим число перерасчета по циклу: число X=min{Xij}, где Xij - числа в заполненных клетках со знаком « - »;

г) составляем новую таблицу, добавляя X в плюсовые клетки и отнимая X из минусовых клеток цикла

6) См. п. 3 и т.д.

Через конечное число шагов (циклов) обязательно приходим к ответу, ибо транспортная задача всегда имеет решение.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно