Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Вивчення поняття "символ О"

Тип Реферат
Предмет Математика
Просмотров
444
Размер файла
147 б
Поделиться

Ознакомительный фрагмент работы:

Вивчення поняття "символ О"

Курсова робота: Вивчення поняття "символ О"


Зміст

Введення

Розділ 1. Символ О

1.1 Основні визначення, приклади

1.2 Основні співвідношення

1.3 Рішення задач

Розділ 2. Додаток символу О

2.1Асимптотичне рішення трансцендентних рівнянь дійсного змінного

2.2 Асимптотичне рішення інтегралів

2.3Асимптотичне обчислення суми ряду

Література


Введення

Слово асимптотика має грецьке походження й буквально означає "ніколи що не з'єднуються". Вивчаючи конічні перетини, давньогрецькі математики розглядали, зокрема, гіперболи, такі, як графік функції ,

Які мають прямі y = x і y = -x своїми "асимптотами". При крива наближається до асимптотам, але ніколи не стикається з ними. У наші дні слово "асимптотика" використовується в більше широкому змісті для позначення будь-якої наближеної величини, що стає усе більше точної в міру наближення деякого параметра до граничного значення.

Точні рішення, якщо їх вдається одержати, - це чудово: остаточна відповідь викликає почуття глибокого задоволення. Але й наближене значення іноді виявляється в ціні.

В 1894 році Пауль Бахман придумав позначення для асимптотичного аналізу. У наступні роки його популярності сприяли Едмунд Ландау й ін. Ми зустрічаємо це позначення у формулах на зразок:

,(1.1)


яка говорить нам, що n-е гармонійне число дорівнює натуральному логарифму n плюс константа Ейлера плюс деяка величина, що становить "О велике від 1 на n". Ця остання величина точно не визначена, однак, який би вона не була, позначення "О" дозволяє затверджувати, що вона не перевершує константу, помножену на 1/n.

Величину О(1/n) можна вважати малої, якщо тільки нас не цікавлять величини, що відрізняються від 1/n лише постійним множником.

Додаток символу О можна зустріти в різних областях математики, а також і у фізику. Наприклад, у книзі Панченкова А.Н. "Асимптотичні методи в екстремальних задачах механіки" розглядається застосування асимптотичних методів у рішенні задач аеродинаміки.

Ціль курсової роботи: вивчити поняття "Символ О" і показати його застосування.

Задачі:

1. Вивчити поняття "Символ О", дати визначення.

2. Вивчити й довести основні співвідношення.

3. Показати застосування символу О при рішенні задач.

4. Знайти застосування символу О в різних областях математики.

На підставі поставлених цілей і задач кваліфікаційна робота розбита на дві глави.

Розділ 1 "Символ О" складається із трьох параграфів. У першому параграфі розглядаються основні визначення, приводяться приклади; у другому - формулюються твердження, приводяться їхні докази; третій параграф присвячений рішенню задач.

Розділ 2 "Додатка символу О" висвітлює застосування символу О, а саме, при рішенні трансцендентних рівнянь, при обчисленні інтегралів, при знаходженні суми рядів.


Розділ 1. Символ О.

1.1 Основні визначення, приклади

Визначення 1:

f(n) = O(g(n)) для всіх n Î N (1.1.1) означає, що існує така константа З, що для всіх n Î N; (1.1.2), а якщо позначення O(g(n)) використано усередині формули, то воно позначає функцію f(n), що задовольняє (1.1.2). Значення функції f(n) невідомі, але ми знаємо, що вони не занадто великі.

Символ "О" включає невизначену константу С, кожне входження О може мати на увазі різні З, але кожна із цих констант не залежить від n.

Приклад 1: ми знаємо, що сума квадратів перших n натуральних чисел дорівнює

n = .

Можна записати n = О(n3),

тому що

для всіх цілих n. Можна одержати більше точну формулу

n = О(n2), тому що


для всіх цілих n. Можна також недбало відкинути частина інформації й записати n = О(n10).

Визначення О не змушує нас давати найкращу оцінку.

Розглянемо приклад, коли змінна n – не целочисленна.

Приклад 2:

,

де х – речовинне число.

Тут уже не можна сказати, що S(x) = O(x3), тому що відношення необмежено росте при х®0. Не можна також сказати, що S(x) = O(x), тому що відношення необмежено росте, коли х прагне до нескінченності. Виходить, ми не можемо використовувати символ "О" для оцінки S(x).

Ця дилема дозволяється завдяки тому, що на змінні, використовувані із О, звичайно накладаються які-небудь обмеження. Якщо, наприклад, ми поставимо умову, що , або що , де e - довільна позитивна константа, або що х – ціле число, то ми зможемо записати S(x) = O(x3). Якщо ж накладена умова або , де з – довільна позитивна константа, то в цьому випадку S(x) = O(x). "О велике" залежить від контексту, від обмежень на використовувані змінні.

Ці обмеження часто задаються у вигляді граничних співвідношень.

Визначення 2: співвідношення f(n) = O(g(n)) при n®¥ означає, що існують дві константи С и n0, такі, що

при всіх n ³ n0.(1.1.3)

Зауваження 1: Значення С и n0 можуть бути різними для різних О, але вони не залежать від n.

Визначення 3: запис f(х) = O(g(х)) при х®0 означає, що існують дві константи С и e, такі, що

,якщо тільки .(1.1.4)

Тепер О представляє невизначену функцію й одну або дві невизначені константи, що залежать від контексту.

Зауваження 2: запис коректний, але в цій рівності не можна міняти місцями праву й ліву частини. У противному випадку ми можемо прийти до безглуздих висновків, на зразок n = n2, виходячи з вірних тотожностей n = О(n2) і n2 = О(n2).

Працюючи із символом "О" ми маємо справу з однобічними рівностями. Права частина рівняння містить не більше інформації, чим ліва, і фактично може містити менше інформації; права частина є "огрубінням" лівої.

Якщо говорити строго формально, то запис O(g(n)) позначає не якусь одну функцію f(n), а відразу множина функцій f(n), таких, що для деякої константи С. Звичайна формула g(n), що не включає символ О, позначає множину, що містить одну функцію f(n) = g(n). Якщо S і T суть множини функцій від n, то запис S + T позначає множину всіх функцій виду f(n) + g(n), де f(n)ÎS і g(n)ÎT; інші позначення начебто S – T, ST, S/T, , е, ln S визначаються аналогічно. Тоді "рівність" між двома такими множинами функцій є теоретико-множинне включення; знак "=" у дійсності означає "(".

Приклад 3: "Рівняння" означає, що S1Í S2, де S1 є множину всіх функцій виду , для яких найдеться константа З1, така, що , а S2 є множина всіх функцій , для яких найдеться константа З2, така, що .

Можна строго довести це "рівність", якщо взяти довільний елемент із лівої частини й показати, що він належить правій частині: нехай таке, що , варто довести, що існує така константа З2, що . Константа вирішує проблему, тому що для всіх цілих n.

Зауваження 3: Якщо у формулі використовується трохи змінних, то символ О представляє множину функцій від двох або більше змінних, а не тільки від однієї. В область визначення кожної функції входять всі змінні, які в даному контексті "вільні" для зміни.

Отут є деяка тонкість через те, що змінні можуть мати сенс лише в частині вираження, якщо вони зв'язані знайомий ( або подібним.

Приклад 4:

,

ціле n ³ 0.(1.1.5)

Вираження k2 + O(k) у лівій частині відповідає множині всіх функцій від двох змінних виду k2 + f(k, n), для яких найдеться константа З, така, що для 0 £ k £ n. Сума таких множин функцій для 0 £ k £ n є множину всіх функцій g(n) виду

,

де f задовольняє сформульованій умові. Оскільки

те всі такі функції g(n) належать правій частині (1.1.5); отже, (1.1.5) справедливо.

1.2 Основні співвідношення

Співвідношення 1:якщо .(1.2.1)

Доказ:

Нехай , тоді по властивості ступеня й модуля. , де З = 1. А по визначенню (1.1.2) символи Об це й означає, що при . Співвідношення 1 доведене.

Співвідношення 2:.(1.2.2)

Доказ:

Покажемо строго відповідно до теоретико-множинного визначення символу О, що ліва частина є підмножиною правої частини.

Будь-яка функція з лівої частини має вигляд a(n) + b(n), і існують константи m0, B, n0, C, такі, що

и.

Отже, функція в лівій частині

А, виходить, по визначенню символу О ліва частина належить правій частині. Співвідношення 2 доведене.

Співвідношення 3: f(n) = O(f(n));(1.2.3)

Доказ:

Для будь-якої функції f(n) вірна нерівність . , де З = 1. По визначенню символу О (1.1.2) це й означає, що f(n) = O(f(n)). Співвідношення 3 доведене.

Співвідношення 4: O(f(n))O(g(n)) = O(f(n)g(n));(1.2.4)

Доказ:

Покажемо відповідно до теоретико-множинного визначення символу О, що ліва частина є підмножиною правої частини.

У лівій частині функції мають вигляд a(n) × b(n), такі, що існують константи В, З, n0, m0, що

і

.


Тоді для будь-якого n ³ max(n0, m0,). Значить ліва частина належить правій частині, а, отже, є підмножиною правої частини по визначенню символу О. Співвідношення 6 доведене.

Співвідношення 5: O(O(f(n))) = O(f(n));(1.2.5)

Доказ:

Покажемо, що ліва частина є підмножиною правої частини.

Функція з лівої частини має вигляд a(n) такий, що існують позитивні константи З, В, n0, m0 такі, що

Отже, по визначенню ліва частина є підмножиною правої частини. Співвідношення 5 доведене.

Співвідношення 6: С× O(f(n)) = O(f(n)),якщо З – константа;(1.2.6)

Доказ:

Існує така константа В, що , по визначенню (1.1.1) З = О(1). Тоді З × O(f(n)) = О(1) × O(f(n)) = (по 1.2.4) = O(f(n)).

Співвідношення доведене.

Співвідношення 7: O(f(n)g(n)) = f(n)O(g(n)).(1.2.7)

Доказ:

Покажемо, що ліва частина є підмножиною правої частини.

У лівій частині функції мають вигляд a(n), такі, що існують константи З, n0, що

.

По визначенню символу О ми одержуємо вірну рівність (1.2.7). Співвідношення 7 доведене.

Співвідношення 8: O(f(n)2) = O(f(n))2.(1.2.8)

Доказ:

O(f(n)2) = O(f(n) · f(n)) = (по 1.2.7) = f(n) · O(f(n)) = (по 1.2.3) = О(f(n)) · O(f(n)) = O(f(n))2

Співвідношення доведене.

Співвідношення 9: е(f(n)) = 1 + O(f(n)), якщо f(n) = О(1)(1.2.9)

Доказ:

е(f(n)) = еg(n), де .

Так як. f(n) = О(1), тобто

, те .

. Значить е(f(n)) = 1 + O(f(n)).

Співвідношення доведене.

Співвідношення 10: Якщо сума сходиться абсолютно для деякого комплексного числа z = z0, те

.

Доказ:

Дане співвідношення очевидно, оскільки


.

Співвідношення доведене.

Зауваження 4: Зокрема, S(z) = O(1) при z ® 0 і S(1/n) = O(1) при n ®¥ при тім тільки умові, що S(z) сходиться хоча б для одного ненульового значення z. Ми можемо використовувати цей принцип для того, щоб, відкинувши хвіст статечного ряду, починаючи з будь-якого зручного місця, оцінити цей хвіст через О. Так, наприклад, не тільки S(z) = O(1), але й

S(z) = a0 + O(z), S(z) = a0 + a1z + O(z2),

і т.д., оскільки

,

а остання сума, як і сама S(z), абсолютно сходиться при z = z0 і є О(1).

У таблиці №1 наведені самі корисні асимптотичні формули [2], половина з яких отримана шляхом відкидання членів статечного ряду відповідно до цього правила.

Таблиця №1Асимптотичні апроксимації, справедливі при n ®¥ і z ® 0

(1.2.10)
(1.2.11)
(1.2.12)
(1.2.13)
(1.2.14)
(1.2.15)

Асимптотичні формули для Hn, n! не є початковими відрізками збіжних рядів; якщо необмежено продовжити ці формули, те отримані ряди будуть розходитися при всіх n.

Говорять, що асимптотична апроксимація має абсолютну погрішність O(g(n)), якщо вона має вигляд f(n) + O(g(n)), де f(n) не включає О. Апроксимація виду f(n)(1 + O(g(n))) має відносну погрішність O(g(n)), якщо f(n) не включає О. Наприклад, апроксимація Hn у таблиці №1 має абсолютну погрішність O(n-6); апроксимація n! - відносну погрішність O(n-4). (Права частина (1.2.11) не така, як потрібно, - f(n)(1 + O(n-4)), але її можна переписати як

.

Абсолютна погрішність цієї апроксимації є O(nn-3.5e-n). Абсолютна погрішність співвідноситься із числом вірних десяткових цифр праворуч від десяткової крапки, які зберігаються після відкидання члена О; відносна погрішність пов'язана із числом вірних "значущих цифр".

1.3 Рішення задач

Задача 1. Що невірно в наступних міркуваннях? Оскільки n = O(n) і 2n = O(n) і так далі, те містимо, що ?

Рішення:

Заміна kn на O(n) має на увазі різні Із для різних k; а потрібно, щоб усе О мали загальну константу. У дійсності, у цьому випадку потрібно, щоб О позначало множину функцій двох змінних, k і n. Правильно буде записати

.

Задача 2. Доведіть або спростуйте: О(f(n) + g(n)) = f(n) + O(g(n)), якщо f(n) і g(n) позитивні для всіх nÎN.

Рішення:

Твердження невірне.

Нехай f(n) = n2, а g(n) = 1. Знайдемо таку функцію j(n), яка б належала лівій множині, але не належала б правій множині, тобто ($З1) ("n) [j(n) £ C1(n2 + 1)] і ("З2) ($n³n0) [j(n) > n2 + C2].

Візьмемо j(n) = 2n2.

1). Нехай З1 = 3, тоді ("n³n0) 2n2£ 3(n2 + 1). Значить функція j(n) належить лівій множині.

2). ("З2) ($n> ) 2n2 > n2 + C2. Значить функція j(n) не належить правій множині.

Задача 3. Доведіть або спростуйте: cos O(x) = 1 + O(x2) для всіх речовинних х.

Рішення:

Якщо функція g(x) належить лівій частині так, що g(x) = cos y для деякого y, причому для деякої константи З, то g(x) = cos y = 1 - 2sin2 (y/2) £ 1 = 1 + 0 × х2. Значить існує така константа В, що g(x) £ 1 + В × х2. Отже, множина з лівої частини втримується в правій частині, і формула вірна.

Задача 4. Доведіть, що .

Рішення:

Перетворимо ліву частину в такий спосіб:

.

Помітимо, що , тоді , де З – константа, тоді можна записати по визначенню символу О, що . Використовуючи це для перетвореної рівності, одержуємо, що

= (по 1.2.4)

Що й було потрібно довести.

Задача 5. Обчислите при nÎN.

Рішення:

(по 1.2.6)

(по 1.2.3)

(по 1.2.4)

(по 1.2.2)

Задача 6. Обчислите (n + 2 + O(n-1))n з відносною погрішністю O(n-1), при n®¥.

Рішення:

(по 1.2.3 і 1.2.4)

При n®¥ k = (2n-1 + O(n-2)) ® 0, тоді ln (1 + k) ® 0. Тоді при n®¥ ln (1 + k) = k.

(по 1.2.9)

.


Задача 7. Доведіть, що , при nÎN, n®¥.

Рішення:

Покажемо, що .(*)

По визначенню - функція аn така, що .

Одержуємо, що , значить .

Тепер доведемо, що :

= (по 1.2.4 і 1.2.6) = = (по (*)) =

(по 1.2.6) = (по 1.2.9) =

(по 1.2.6) = .


Розділ 2. Додаток символу О

2.1 Асимптотичне рішення трансцендентних рівнянь: дійсного змінного

Приклад 1.

Розглянемо рівняння

x +th x = u,

де u - дійсний параметр, - гіперболічний тангенс [6], , х і th x – безперервні, строго зростаючі функції на всій числовій прямій.

Знайдемо асимптотичне наближення для кореня:

1). Функція u(x) = x +th x безперервна й строго монотонна на R. По теоремі О безперервність зворотної функції, існує зворотна до неї функція х(і), безперервна й строго монотонна на Еи = R.

Тому що при х®¥ і(х)®¥, те при й®¥ х(і)®¥.

Нехай і®¥, тоді х®¥ і .

Виходить, х(і) ~ і, при й®¥. Це перше асимптотичне наближення для кореня.

2). Приведемо рівняння до виду:

x = і - th x.

+З, де З – деяка константа. По визначенню символу О thx = 1+O(1).

x = і – 1 + О(1) - це друге асимптотичне наближення кореня.

3). Доведемо, що е-2х = О(е-2і):(2.1.1)

підставимо друге асимптотичне наближення кореня

е-2х = е-2(і – 1 + О(1)) = е-2і × е2× еО(1) = (по 1.2.3 і 1.2.9) = е2 О(е-2і)(1 + О(1))×=

(по 1.2.3) = е2 О(е-2і)(2О(1)) = (по 1.2.6 і 1.2.4) = О(е-2і).

Розкладемо th x у ряд [6], зручний при більших х:

th x = 1 – 2е-2х + 2е-4х – 2е-6х +…(х > 0)

Тоді по теоремі [3]:(2.1.2)

якщо ряд сходиться при , тоді для фіксованого n у будь-якому колі , де .Ряд – 2е-2х + 2е-4х – 2е-6х +…сходиться при х > 0, тобто і його сума дорівнює th x - 1. Виходить, по теоремі: th x - 1 = О(е-2х), тобто th x=О(е-2х)+1.Тоді x = і - th x = і – 1 + О(е-2х) = (по 2.1.1) = і – 1 + О(О(е-2і)) =(по 1.2.5) = і – 1 + О(е-2і).Таким чином, x = і – 1 + О(е-2і) - цей третє асимптотичне наближення кореня.

4). Доведемо, що е-2х = е-2і+2 + О(е-4і):(2.1.3)підставимо третє асимптотичне наближення кореня

(по 1.2.9)

(по 1.2.6)

(по 1.2.3 і 1.2.4) .


Ряд 2е-4х – 2е-6х + 2е-8х – 2е-10х +…сходиться при х > 0, тобто і його сума дорівнює th x – 1 + 2е-2х. Виходить, по теоремі: th x – 1 + 2е-2х = О(е-4х), тобто th x=О(е-4х)+1 - 2е-2х.

Тоді

x = і - th x = і – 1 + 2е-2х + О(е-4х) = (по 2.1.3) =

= і – 1 + 2(е-2і+2 + О(е-4і)) + О(е-4х) = (по 1.2.6) =

= і – 1 + 2е-2і+2 + О(е-4і) + О(е-2х × е-2х) = (по 2.1.1) =

= і – 1 + 2е-2і+2 + О(е-4і) + О(О(е-2і)× О(е-2і)) = (по 1.2.4) =

= і – 1 + 2е-2і+2 + О(е-4і) + О(О(е-4і)) = (по 1.2.5) =

= і – 1 + 2е-2і+2 + О(е-4і) + О(е-4і) = і – 1 + 2е-2і+2 + 2О(е-4і) = (по 1.2.6) =

= і – 1 + 2е-2і+2 + О(е-4і).

Таким чином, x = і – 1 + 2е-2і+2 + О(е-4і) - цей четверте асимптотичне наближення кореня.

Продовжуючи цей процес, одержимо послідовність наближень із помилками, асимптотичний порядок яких постійно убуває. Збіжність цієї послідовності при необмеженому зростанні числа кроків на основі проведених міркувань побачити важко, але чисельні можливості цього процесу можна оцінити, взявши, наприклад, і = 5:

1) х = 5;

2) х = і – 1 + О(1) = 5 – 1 = 4; (не враховуємо помилку О(1))

3) x = і – 1 + О(е-2і) = 5 – 1 = 4; (не враховуємо помилку О(е-2і))

4) x = і – 1 + 2е-2і+2 + О(е-4і) = 5 – 1 + 0,000670925…=4,000670925..... (не враховуємо помилку О(е-4і))

Точне значення, отримане стандартними чисельними методами, дорівнює 4,0006698...

Приклад 2.

Знайдемо більших позитивних корінь рівняння

x tg x = 1

Це рівняння можна звернути в такий спосіб:

,

де n – ціле число, а арктангенс приймає значення в інтервалі , знаходимо, що x ~ np при (n → ¥).

Якщо x > 1, то [6]

1). По теоремі (2.1.2)

.

.

2).

По теоремі (2.1.2)


. Тоді .

.

3).

По теоремі (2.1.2)

. Тоді .

.

І так далі.

2.2Асимптотичне рішення інтегралів

Приклад 1. Обчислити при х > 1.

Розкладемо в ряд [6]:


По теоремі (2.1.2)

, тобто .

Приклад 2. Обчислити при e®+0, , А(х) - східчаста функція: А(х) = 0 при х < 0, А(х) = Аk, k £ x < k + 1, Аk = а1 + а2 +…+аk , аk = k -1 . Причому .

Скористаємося асимптотичною формулою [4]

,

де g - постійна Ейлера . Уведемо функцію Ã(х) = lnx + g.

.


Останній інтеграл має порядок О(e ln e) при e®+0, а передостанній – дорівнює -g/2, так що

.

S(e) = I + J, де

.

Оцінимо інтеграл J. Нехай , тоді " k ³ 1

.

Ологарифмуємо , одержимо .

Значить

Отже,

.

Одержуємо, що

.


2.3Асимптотичне обчислення суми ряду

При знаходженні суми ряду нерідко використовується формула підсумовування Ейлера [2]:

де

Вk – числа Бернуллі, Вm({x}) – багаточлен Бернуллі.

Вk = (-1)kb2k. [6]

. Коефіцієнти bk обчислюються, використовуючи теорему О одиничність розкладання функції в статечної ряд:

шляхом дорівнюючи коефіцієнтів:

коефіцієнт при х: b0 = 1,

коефіцієнт при хk:


Приклад 1. Знайти .

По 1.2.10 Нk = ln k + O(1). Тоді

.

Застосуємо формулу підсумовування Ейлера:

.


Приклад 2. Знайти

Застосуємо формулу підсумовування Ейлера:

Приклад 3. Знайти асимптотику при n ®¥ суми

Члени цієї суми швидко ростуть із ростом номера, так що головний член асимптотики дорівнює останньому члену суми: S(n) ~ n!, n ®¥. Дійсно,

Отже,


Література

1. Брейн, Н.Г. Асимптотичні методи в аналізі. – К., 2006

2. Грехем, Р. Конкретна математика. Основи інформатики. – К.,2004

3. Олвер, Ф. Введення в асимптотичні методи й спеціальні функції. – К., 2004

4. Панченков, О.М. Асимптотичні методи в екстремальних задачах механіки. – К., 2004

5. Федорюк, М.В. Асимптотика: інтеграли й ряди. – К., 2005

6. Фихтенгольц, Г.М. Курс диференціального й інтегрального вирахування. – К., 2000


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно