Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Компьютерное математическое моделирование в экономике

Тип Реферат
Предмет Математика
Просмотров
582
Размер файла
141 б
Поделиться

Ознакомительный фрагмент работы:

Компьютерное математическое моделирование в экономике

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Шадринский Государственный Педагогический институт

КОМПЬЮТЕРНОЕ МАТЕМАТИЧЕСКОЕ

МОДЕЛИРОВАНИЕ В ЭКОНОМИКЕ.

Курсовая работа.

Выполнили:

Студентки 201 гр.

Благодарева Юлия Григорьевна

Реутова Елена Александровна

Руководитель:

Пайвина Юлия Васильевна

Шадринск, 2003 г.

Оглавление

Введение…………………………………………………….….……..3

1. Постановка задачи линейного программирования….…...4

2. Симплекс-метод……………………………………………14

3. Контрольные вопросы и задания…………………………21

Заключение……………………………………………….…………..24

Литература…………………………………………………….………25

Введение

В последние годы мы особенно отчетливо ощутили, что нет ничего важнее для общества, чем здоровая экономика. Научное исследование основ функционирования экономики – сложная и интересная деятельность. Математические методы в ней играют возрастающую с каждым десятилетием роль, а реализация возникающих при этом математических моделей и получение практически важных результатов невозможны без ЭВМ.

ПОСТАНОВКА ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

В данном параграфе рассматривается лишь один из разделов - оптимальное пла­нирование - и внутри него одна из моделей, так называемое, линейное программи­рование. Это связано с относительной простотой и ясностью как содержательной постановки соответствующих задач, так и методов решения. О таких интересных, но более сложных проблемах, как выпуклое программирование, динамическое программирование, теория игр мы лишь упомянем, отсылая читателей за подроб­ностями к специальной литературе. Отметим еще, что термин «программирование» в названии этих разделов теории оптимального планирования весьма условен, связан с историческими обстоятельствами и к программированию в общепринятом сейчас смысле прямого отношения не имеет.

Общеизвестно, сколь важно для решения экономических задач планирование - как при рыночной, так и при плановой экономике. Обычно для решения экономи­ческой проблемы существует много способов (стратегий), отнюдь не равноценных по затратам финансов, людских ресурсов, времени исполнения, а также по дости­гаемым результатам. Наилучший из способов (по отношению к выбранному критерию - одному или нескольким) называют оптимальным. Приведем простей­ший пример такого рода задач.

Пример 1. На некотором предприятии могут выпускать изделия двух видов (например, мотоциклы и велосипеды). В силу ограниченности возможностей сборочного цеха в нем могут собирать за день либо 25 мотоциклов (если не собирать вообще велосипеды), либо 100 велосипедов (если не собирать вообще мотоциклы), либо какую-нибудь комбинацию тех и других, определяемую прием­лемыми трудозатратами. Склад может принять не более 70 изделий любого вида в сутки. Известно, что мотоцикл стоит в 2 раза дороже велосипеда. Требуется найти такой план выпуска продукции, который обеспечил бы предприятию наиболь­шую выручку.

Такого рода задачи возникают повседневно в огромном количестве, но в реаль­ности число изделий гораздо больше двух, да и дополнительных условий тоже больше. Решить подобную задачу путем перебора всех мыслимых вариантов часто невозможно даже на ЭВМ. В нашем примере, однако, в ЭВМ нет необходимости - задача решается очень легко.


Обозначим число выпускаемых за день мотоциклов х, велосипедов - у. Пусть т1 - время (в часах), уходящее на производство одного мотоцикла, а т2 - одного велоси­педа. Из условия задачи следует, что т1 = 4т2. Если завод работает круглосуточно, то, очевидно, при одновременном выпуске обоих изделий

или


Но – 24/т2 - число максимально производимых велосипедов, равное 100. Итак, воз­можности производства определяют условие


Еще одно условие - ограниченная емкость склада:

Обозначим цену мотоцикла а1 (руб.), цену велосипеда - а2 (руб.). По условию a1 = 2а2. Общая цена дневной продукции



Поскольку а2 - заданная положительная константа, то наибольшего значения следует добиваться от величины

Итак, учитывая все условия задачи, приходим к ее математической модели: сре­ди неотрицательных целочисленных решений системы линейных неравенств


(7.71)

найти такое, которое соответствует максимуму линейной функции

f = 2х + у. (7.72)

Проще всего решить эту задачу чисто геометрически. Построим на плоскости (х, у) область, соответствующую неравенствам (7.71) и условию неотрицательности х и у. Эта область выделена на рис.1 жирной линией. Всякая ее точка удовлетво­ряет неравенствам (7.71) и неотрицательности переменных. Пунктирные линии на рисунке - семейство прямых, удовлетворяющих уравнению f = 2х + у = с (с разны­ми значениями константы с). Вполне очевидно, что наибольшему возможному значению f, совместному с предыдущими условиями, соответствует жирная пунк­тирная линия, соприкасающаяся с областью М в точке Р.


25

О 10 20 30 40 50 60 70 80

Рис. 1. Графическое решение задачи об оптимальном плане производства (к примеру 1)

Этой линии соответствует значение f= 80. Пунктирная линия правее хоть и соответствует большему значениюf, но не имеет общих точек с М, левее - меньшим значениям f. Координаты точки Р (10, 60) - искомый оптимальный план производства.

Отметим, что нам «повезло» - решение (х, у) оказалось целочисленным. Если бы прямые


пересеклись в точке с нецелочисленными координатами, мы бы столкнулись со значительными проблемами. Еще больше их было бы, если бы наш завод выпускал три и более видов продукции.

Прежде чем обсуждать возникающие при этом математические проблемы, дадим формулировки нескольких классических задач линейного программирования в общем виде.

Пример 2. Транспортная задача. Некий продукт (например, сталь) вырабатыва­ется на m заводах Р1, Р2, ..., Рm, причем ежемесячная выработка составляет a1, а2, …, аm тонн, соответственно. Пусть эту сталь надо доставить на предприятия Q1, Q2, ..., Qk (всего k), причем b1, b2, ..., bk - ежемесячная потребность этих предприятий. Наконец, пусть задана стоимость cij перевозки одной тонны стали с завода Pi на предприятие QJ. Естественно считать, что общее производство стали равно суммар­ной потребности в ней:

a1 + a2 + … + am = b1 + b2 + … + bk (7.73)

Необходимо составить план перевозок, при котором

1) была бы точно удовлетворена потребность в стали предприятий Q1, Q2,..., Qk;

2) была бы вывезена вся сталь с заводов PI, Р2, ..., Рт;

3) общая стоимость перевозок была бы наименьшей.

Обозначим через Хijколичество стали (в тоннах), предназначенной к отправке с завода Рi на предприятие QJ. План перевозок состоит из (m×k) неотрицательных чисел xij(i = 1, 2, ..., m; j = 1, 2, ..., k).

Таблица 7.10

Схема перевозок стали

В В В ¼В Отправлено
Из
Из
Из xm3
Привезено

Первое условие примет вид


(7.74)

Второе условие примет вид


(7.75)

Раз стоимость перевозки одной тонны из Рi, в QJ равна сij, то общая стоимость S всех перевозок равна

(7.76)

Таким образом, мы приходим к следующей чисто математической задаче: дана система m+k линейных алгебраических уравнений (7.74) и (7.75) с m·k неизвестны­ми (обычно m·k » m+k) и линейная функция S. Требуется среди всех неотрица­тельных решений данной системы найти такое, при котором функция S достигает наименьшего значения (минимизируется).

Практическое значение этой задачи огромно, ее умелое решение в масштабах нашей страны могло бы экономить ежегодно огромные средства.

Пример 3. Задача о диете. Пусть у врача-диетолога имеется n различных продук­тов F1, F2, ..., Fn, из которых надо составить диету с учетом их питательности. Пусть для нормального питания человеку необходимо m

веществ N1, N2, …, Nm. Предположим, что за месяц каждому человеку необходимо g1 кг вещества N1, g2 кг вещества N2, ..., gm кг вещества Nm. Для составления диеты необходимо знать содержание питательных веществ в каждом продукте. Обозначим через aij количе­ство i-го питательного вещества, содержащегося в одном килограмме j-го продукта. Всю эту информацию представляют в виде, так называемой, матрицы питательно­сти (табл. 7.11).

Таблица 7.11

Матрица питательности

Питательное веществоПродукт

Предположим, что диетолог уже выбрал диету, т.е. определил, что человек дол­жен за месяц потреблять h1 кг продукта F1,...,hn кг продукта Fn. Полное количество питательного вещества N1 будет

По условию требуется, чтобы его, по крайней мере, хватило

(7.77)

Точно то же и для остальных веществ. В целом

(I = 1, 2, …, m).
(7.78)

Эти условия определяют наличие минимума необходимых питательных веществ. Диета, для которой выполнены условия (7.78) - допустимая диета. Предположим, что из всех допустимых диет должна быть выбрана самая дешевая. Пусть pi - цена 1 кг продукта Fi. Полная стоимость диеты, очевидно,

(7.79)

Таким образом, мы пришли к задаче: найти неотрицательное решение h1, ..., hn системы неравенств (7.78), минимизирующее выражение (7.79).

В примерах, приведенных выше, имеется нечто общее. Каждый из них требует нахождения наиболее выгодного варианта в определенной экономической ситуа­ции. С чисто математической стороны в каждой задаче требуется найти значение нескольких неизвестных так, чтобы

1) все эти значения были неотрицательны;

2) удовлетворяли системе линейных уравнений или линейных неравенств;

3) при этих значениях некоторая линейная функция имела бы минимум (или мак­симум). Таким образом, линейное программирование - это математическая дисцип­лина, изучающая методы нахождения экстремального значения линейной функции нескольких переменных при условии, что последние удовлетворяют конечному числу линейных уравнений и неравенств. Запишем это с помощью формул: дана система линейных уравнений и неравенств.

Запишем это с помощью формул: дана система линейных уравнений и неравенств


(7.80)

и линейная функция

(7.81)

Требуется найти такое неотрицательное решение

(7.82)

системы (7.80), чтобы функция/принимала наименьшее (или наибольшее) значение.

Условия (7.80) называют ограничениями данной задачи, а функцию f- целевой функцией (или линейной формой). В приведенных выше примерах ограничения имели вид не уравнений, а неравенств. Заметим, что ограничения в виде неравенств, всегда можно свести к системе в виде равенств (способом введения добавочных неизвестных).

Так, для неравенства

(7.83)

вводя добавочное неизвестное хn+1, получаем

(7.84)

Потребовав его неотрицательности наряду с остальными неизвестными, получим, что условие хn+1³ 0 превращает (7.84) в (7.83). Введя по отдельному дополнитель­ному неизвестному для каждого из неравенств, получим систему уравнений, равно­сильную исходной системе неравенств.

Пример. Дана система неравенств


Сведем ее к системе уравнений. Получим


После оптимизации значениями дополнительных неизвестных следует пренебречь.

СИМПЛЕКС-МЕТОД

Для решения ряда задач линейного программирования существуют специальные методы. Есть, однако, общий метод решения всех таких задач. Он носит название симплекс-метода и состоит из алгоритма отыскания какого-нибудь произвольного допустимого решения и алгоритма последовательного перехода от этого решения к новому допустимому решению, для которого функция f изменяется в нужном направлении (для получения оптимального решения).

Пусть система ограничений состоит лишь из уравнений


(7.85)

и требуется отыскать минимум линейной функции (7.81). Для отыскания произ­вольного опорного решения приведем (7.85) к виду, в котором некоторые r неиз­вестных выражены через остальные, а свободные члены неотрицательны (как это сделать - обсудим позднее):

(7.86)

Неизвестные х1, х2, ..., хr - базисные неизвестные, набор {х1, х2, ..., хr} называется базисом, а остальные неизвестные {xr+1, хr+2, …, хn} - свободные. Подставляя (7.86) в (7.81), выразим функцию f через свободные неизвестные:

(7.87)

Положим все свободные неизвестные равными нулю:

(7.88)

Найдем из системы (7.86) значения базисных неизвестных

(7.89)

Полученное таким образом допустимое решение

отвечает базису x1, x2, ..., хr, т.е. является базисным решением. Допустим для определенности, что мы ищем минимум f. Теперь нужно отданного базиса перейти к другому с таким расчетом, чтобы значение линейной функции f при этом умень­шилось. Проследим идею симплекс-метода на примере.

Пример 1. Дана система ограничений


Требуется минимизировать линейную функцию f = х2 – х3. В качестве свободных переменных выберем х2 и x3. Тогда данная система ограничений преобразуется к виду


Таким образом, базисное решение (3, О, О, 1). Так как линейная функция уже запи­сана в свободных неизвестных, то ее значение для данного базисного решения f = 0. Для уменьшения этого значения можно уменьшить х2 или увеличить х3. Но х2 в данном базисе равно нулю и потому его уменьшать нельзя. Попробуем увеличить x3. Первое из уравнений имеет ограничение х3 = 1 (из условия х1³ 0), второе - не дает ограничений. Далее, берем х3= 1, х2 не меняем и получаем новое допустимое решение (О, О, 1, 3), для которого f= -1 - уменьшилось. Найдем базис, которому соответствует это решение (он состоит, очевидно, из переменных x3, х4). От преды­дущей системы ограничений переходим к новой:


а форма в новых свободных переменных имеет вид

Теперь попробуем повторить предыдущую процедуру. Для уменьшения f надо уменьшить либо x1, либо х2, но это невозможно, так как в этом базисе

x1 = О, х2 = 0.

Таким образом, данное базисное решение является оптимальным, и minf= -1 при x1 = О, х2 = 0, хз = 1, x4 = 3.

Приведем алгоритм симплекс-метода в общем виде. Обычно все вычисления по симплекс-методу сводят в стандартные таблицы.

Запишем систему ограничений в виде


(7.90)

а функцию f

(7.91)

Тогда очередной шаг симплекс-процесса будет состоять в переходе от старого базиса к новому таким образом, чтобы значение линейной функции, по крайней мере, не увеличивалось.

Данные о коэффициентах уравнений и линейной функции занесем в табл. 7.12.

Таблица 7.12

Симплекс-таблица

БазисСв.чл.
100
010
001
000

Сформулируем алгоритм симплекс-метода применительно к данным, внесенным в табл. 7.12.

1. Выяснить, имеются ли в последней строке таблицы положительные числа (γ0 не принимается во внимание). Если все числа отрицательны, то процесс закончен; базисное решение (b1, b2, ..., br, 0, ..., 0) является оптимальным; соответствующее значение целевой функции f = γ0. Если в последней строке имеются положительные числа, перейти к п. 2.

2. Просмотреть столбец, соответствующий положительному числу из последней строки, и выяснить, имеются ли в нем положительные числа. Если ни в одном из таких столбцов положительных чисел нет, то оптимального решения не существует. Если найден столбец, содержащий хотя бы один положительный элемент (если таких столбцов несколько, взять любой из них), пометить этот столбец и перейти к п. 3.

3. Разделить свободные члены на соответствующие положительные числа из вы­деленного столбца и выбрать наименьшее частное. Отметить строку таблицы, соответствующую наименьшему частному. Выделить разрешающий элемент, стоящий на пересечении отмеченных строки и столбца. Перейти к п. 4.

4. Разделить элементы выделенной строки исходной таблицы на разрешающий элемент (на месте разрешающего элемента появится единица). Полученная таким образом новая строка пишется на месте прежней в новой таблице. Перейти к п. 5.

5. Каждая следующая строка новой таблицы образуется сложением соответствующей строки исходной таблицы и строки, записанной в п. 4, которая предварительно умножается на такое число, чтобы в клетках выделенного столбца при сложении появились нули. На этом процесс заполнения новой таблицы заканчивается, и происходит переход к п. 1.

Таким образом, используя алгоритм симплекс-метода применительно к симплекс-таблице, мы можем найти оптимальное решение или показать, что его не существует. Результативность комплекс-метода гарантируется следующей теоремой (приведем ее без доказательства): если существует оптимальное решение задачи линейного программирования, то существует и базисное оптимальное решение. Это решение может быть получено через конечное число шагов симплекс-методом, причем начинать можно с любого исходного базиса.

Ранее мы предполагали, что если система ограничений задана в виде (7.85), то перед первым шагом она уже приведена к виду(7.86), где bi≥0 (I=1,2, …, r). Последнее условие необходимо для использования симплекс-метода. Рассмотрим вопрос об отыскании начального базиса.

Один из методов его получения – метод симплексного преобразования.

Прежде всего проверяем, есть ли среди свободных членов отрицательные. Если свободные члены не являются числами неотрицательными, то добиться их неотрицательности можно несколькими способами:

1) умножить уравнения, содержащие отрицательные свободные члены, на –1;

2) найти среди уравнений, содержащих отрицательные свободные члены, уравнение с максимальным по абсолютной величине отрицательным свободным членом и затем сложить это уравнение со всеми остальными, содержащими отрицательные свободные члены, предварительно умножив его на –1.

Затем, используя действия, аналогичные указанным в пп. 3-5 алгоритма симплекс-метода, совершаем преобразования исходной таблицы до тех пор, пока не получим неотрицательное базисное решение.

Пример 2. Найти исходное неотрицательное базисное решение системы ограничений.


Так как условие неотрицательности свободных членов соблюдается, приступим к преобразованиям исходной системы, записывая результаты в таблицу. Согласно алгоритму просматриваем первый столбец. В этом столбце имеется единственный положительный элемент а31. Делим на 8,654 все коэффициенты и свободный член третьей строки, после чего умножаем каждый коэффициент на 8,704 и складываем с соответствующими коэффициентами второй строки. Первая строка преобразований не требует, так как коэффициент при неизвестном x1 равен нулю. В результате получаем

0,00000 -5,87100 6,54300 -9,99600 7,61800 0,86400

0,00000 0,68512 17,46384 8,57990 -3,19062 9,79929

1,00000 -0,77756 0,97677 0,89808 0,62769 1,11584

Продолжая просматривать второй столбец и совершая аналогичные преобразо­вания, имеем

0,00000 0,00000 156,19554 63,52761 -19,72328 84,83688

0,00000 1,00000 25,49013 12,52318 -4,65701 14,30299

1,00000 0,00000 20,79687 10,63560 -2,99341 12,24727

И, наконец, на третьем шаге находим исходный базис. Его образуют неизвест­ные x1, х2, х3. Неизвестные х4, х5 являются свободными:

0,00000 0,00000 1,00000 0,40672 -0,12627 0,54315

0,00000 1,00000 0,00000 2,15588 -1,43829 0,45815

1,00000 0,00000 0,00000 2,17713 -0,36733 0,95155

Контрольные вопросы и задания

1. Приведите примеры задач, приводящих к общей постановке задачи линейного программирования.

2. Сформулируйте задачу линейного программирования.

3. Сколько решений может иметь задача линейного программирования?

4. По каким причинам может отсутствовать решение задачи линейного про­граммирования?

5. Каким образом неравенства из системы ограничений можно заменить уравне­ниями? Как задачу отыскания максимума линейной формы свести к задаче отыска­ния минимума?

6. Необходимо ли учитывать при записи решения дополнительные неизвестные, вводимые при переходе от неравенств к уравнениям?

7. Как найти начальный базис?

8. Сформулируйте алгоритм симплекс-метода.

9. Сформулируйте теорему о конечности алгоритма симплекс-метода.

10. Найдите максимум функции z = 4xl + 3х2 (xi≥ 0) при условии

x1-x2≥ -2,

5x1+3x2≤15,

x2≤ 2,5,

2x1-x2≥ -2,

x1-2x2≤ 2.

11. Для откорма крупного рогатого скота используется два вида кормов b1и b2, в которые входят питательные вещества а1, а2, а3 и a4. Содержание количеств единиц питательных веществ в одном килограмме каждого корма, стоимость одного килограмма корма и норма содержания питательных веществ в дневном рационе животного представлены в таблице. Составьте рацион при условии мини­мальной стоимости.

Питательные вещества Вид кормов Норма содержания питательного вещества
B1 B2
A1 3 4 24
A2 1 2 18
A3 4 0 20
A4 0 1 6
Стоимость 1 кг корма, руб. 21

12. Трикотажная фабрика использует для производства свитеров и кофточек чистую шерсть, силон и нитрон, запасы которых составляют, соответственно, 800, 400 и 300 кг.

Вид сырья в пряже Затраты пряжи на 10 шт.,
Свитер Кофточка
Шерсть 4 2
Силон 2 I
Нитрон 1 1
Прибыль, руб. 6 5

Количество пряжи (кг), необходимое для изготовления 10 изделий, а также прибыль, получаемая от их реализации, приведены в таблице. Составьте план производства изделий, обеспечивающий получение максимальной прибыли.

13. При подкормке посевов необходимо внести на 1 га почвы не менее 8 единиц химического вещества А, не менее 21 единиц химического вещества В и не менее 16 единиц химического вещества С. Фермер закупает комбинированные удобрения двух видов I и П. В таблице указано содержание количества единиц химического вещества в 1 кг каждого вида удобрений и цена 1 кг удобрений. Определите потреб­ность фермера в удобрениях I и II вида на 1 га посевной площади при минимальных затратах на их приобретение.

Химические вещества Содержание химических веществ в I кг удобрения
III
А 1 5
В 12 3
С 4 4
Цена 1 кг удобрения, руб 5 2

Заключение.

При решении задачи линейного программирования целесообразно использова­ние компьютера. В этом случае можно составить программу, решающую задачу. Учитывая, что программирование довольно трудоемко, можно посоветовать воспользоваться для оформления результатов расчетов табличным процессором. Кроме того, если получившаяся модель задачи слишком громоздка, можно вос­пользоваться математическими пакетами, которые позволяют получить решение задачи линейного программирования. И, наконец, еще один возможный вариант применения компьютеров - комбинирование всех вышеуказанных способов.

Литература:

А.В.Могилев, Н.И.Пак, Е.К.Хеннер, Информатика,

М., Академия, 2003.-816 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно