Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Обратимые матрицы над кольцом целых чисел

Тип Реферат
Предмет Математика
Просмотров
1050
Размер файла
120 б
Поделиться

Ознакомительный фрагмент работы:

Обратимые матрицы над кольцом целых чисел

Министерство образования Российской Федерации

Вятский государственный гуманитарный университет

Математический факультет

Кафедра алгебры и геометрии

Выпускная квалификационная работа

Обратимые матрицы над кольцом Zn

Выполнила:

Студентка V курса

Математического факультета

Сычева О. Г.


Научный руководитель:

д.ф.-м.н., профессор

Вечтомов Е. М.


Рецензент:

к.ф.-м.н., доцент

Чермных В. В.


Допущена к защите в ГАК


Зав.кафедрой Вечтомов Е М.

« »

Декан факультета Варанкина В. И.

« »

Киров 2003

Содержание:

Введение………………………………………….…………………….2 стр.

§1 Основные понятия………………………………………………….3 стр.

§2 Обратимые матрицы над полем Zp

п.1 формула для подсчета обратимых матриц порядка 2 ……….10 стр.

п.2 формула для подсчета обратимых матриц порядка 3 ……….11 стр.

п.3 общая формула подсчета обратимых матриц над полем Zp ..16 стр.

§3 Обратимые матрицы над Zn ………………………………………17 стр.

Литература …………………………………………………………….27 стр.

Введение

Теория матриц является одним из основных вопросов линейной алгебры.

Цель данной работы: подсчитать количество обратимых матриц над кольцом вычетов и по возможности получить формулу для их вычисления. Для вычисления количества обратимых матриц воспользовались теорией определителей и полным перебором всех возможных вариантов получения элементов в кольцах вычетов.

Вся работа разбита на два этапа:

В §2 показан метод построения обратимых матриц второго и третьего порядков над полем Zp . В конце параграфа построена гипотеза формулы подсчета количества обратимых матриц n–го порядка над полем Zp .

В §3 приведен алгоритм построения обратимых матриц второго порядка над некоторыми кольцами вычетов (приведены конкретные примеры). В конце параграфа построена гипотеза формулы подсчета количества обратимых матриц второго порядка над кольцом классов вычетов Zn.


§1. Основные определения.

Матрицей называется прямоугольная таблица, заполненная некоторыми математическими объектами. Чаще всего рассматриваются матрицы, заполненные элементами из некоторого поля P.

Элементы матрицы обозначаются одной буквой с двумя индексами, указывающими "адрес" элемента - первый индекс дает номер строки, содержащий элемент, второй - номер столбца. Если матрица имеет m строк и n столбцов, то говорят, что матрица имеет размерность (или - размеров ). Мы будем обозначать матрицы заглавными латинскими буквами, а ее элементы - такими же буквами, но строчными. Таким образом, матрица (размеров ) записывается в форме:

.

Матрица, состоящая из одних нулей, называется нулевой.
Будем обозначать ее 0.

Матрица, имеющая одно и то же число n строк и столбцов, называется квадратной. Число n называется порядком квадратной матрицы.

Элементы матрицы, у которых оба индекса равны (i=j) называются диагональными, а воображаемая прямая, соединяющая все диагональные элементы матрицы называется главной диагональю.

Квадратная матрица, у которой все элементы, за исключением элементов главной диагонали, равны нулю, называется диагональной.

Диагональная матрица, у которой все диагональные элементы равны единице, называется единичной матрицей и обозначается Е.:

Две матрицы считаются равными, если они одного размера и у них совпадают соответствующие элементы.

Две матрицыA=(aij) и B=(bij) одного и того же размера можно складывать, их суммой будет матрица того же размера C=(cij), , т.е. чтобы получить сумму двух матрицы достаточно сложить соответственные элементы этих матриц.

Произведение элемента c из поля на матрицу A=(aij) определяется следующим образом: cA=(caij).

Для любой матрицы A существует противоположная -A такая, что
A+(-A)=0.

Все перечисленные свойства непосредственно следуют из определений и свойств операций в поле.

Рассмотрим матрицу A=(aij) размером и матрицу B=(bij) размером (т.к. произведение матриц определено лишь в том случае, когда число столбцов в первой матрице равно числу строк во второй). Для таких матриц введем действие умножения матрицы на матрицу, в результате чего получается матрица C=(cij) размером , где .

Итак, матрицы можно складывать, умножать их на скаляр, а также умножать матрицу на матрицу. Эти действия обладают свойствами:

По сложению:

1. (A+B)+C=A+(B+C) – ассоциативность;

2. A+B=B+A – коммутативность;

3. Существует нейтральный элемент – матрица 0: A+ 0 = 0 + A = A;

4. Для матрицы A существует обратный элемент -A: A + (-A)=0;

По умножению матриц на скаляр:

5. ;

6. ;

7. ;

8. ;

По умножению матриц:

9. Произведение матриц в общем случае не коммутативно, т.е. ABВА;

10. (AB)C=A(BC) – ассоциативность;

11. (cA)B=A(cB)=cAB;

12. Дистрибутивность умножения относительно сложения (правая и левая)(A1+A2)B=A1B+A2B, A(B1+B2)=AB1+AB2;

13. Существует единственный нейтральный элемент E
(если A – квадратная): EA = AE = A. Если же A размером , то
EmA = AEn = A.

14. Произведение матрицы А на нулевую матрицу дает в результате так же нулевую матрицу (существуют случаи, когда нулевая матрица получается в результате перемножения ненулевых матриц).

Для квадратных матриц фиксированного порядка n действия сложения и умножения определены всегда, и их результатами являются квадратные матрицы того же порядка. Таким образом, квадратные матрицы фиксированного порядка образуют кольцо.

Определителем n-го порядка квадратной матрицы А, называется алгебраическая сумма n! членов, которыми являются всевозможные произведения по n элементов, взятых по одному и только по одному из каждой строки и каждого столбца, причем член берется со знаком плюс, если его индексы составляют четную перестановку, и со знаком минус – если нечетную перестановку.

,

где (a1, a2, ..., an) пробегает все перестановки чисел 1, 2, ..., n; множитель равен +1, если (a1, a2, ..., an) - четная перестановка, и равен –1, если нечетная.

Минором элемента aijназывается определитель (n-1) – порядка, полученный из данного определителя n-го порядка, путем вычеркивания i-й строки и j-го столбца.

Минор aijэлемента обозначается Мij.

Алгебраическим дополнением элемента aij называется минор этого элемента, взятый со знаком (-1)i+j.

Алгебраическое дополнение элемента обозначается Аij=(-1)i+j× Мij.

Матрица B называется обратной для матрицы A, если AB=BA=E,
где E - единичная матрица. Равенство AB=BA показывает (нетрудно видеть, используя правило умножения матриц), что число строк и столбцов матрицы A должно быть одинаково.

Таким образом, обратная матрица имеет смысл только для квадратных матриц. Далее мы будем рассматривать только квадратные матрицы.

Если матрица А имеет обратную, то она единственна.

Покажем это. Пусть АВ=СА=Е и СВ, тогда заметим: С=СЕ=С(АВ)=(СА)В=ЕВ=В. Что противоречить условию.

Определитель произведения любых двух матриц n-го порядка равен произведению их определителей.

Докажем. Рассмотрим единичные столбцы n-го порядка:

, , …,

Возьмем произведение матрицы АВ на столбец единичных столбцов (т.е. столбец из nn-мерных столбцов)

Тогда =×1=×==

====.
Что требовалось доказать.

Заключение данной теоремы также выполняется и для случая, когда элементы матриц взяты из кольца вычетов Zn.

Квадратная матрица называется вырожденной, если ее определитель равен нулю и не вырожденной в противном случае.

Для всякой невырожденной матрицы существует обратная матрица.

Покажем это. ПустьA=(aij) –невырожденная квадратная матрица (). Рассмотрим матрицу А*=, где Аij – алгебраическое дополнение элементов определителя , причем алгебраические дополнения i-й сроки стоят в i-ом столбце.

Найдем произведение С=АА*, где С=(сij)

и т.д.

Найдя все элементы матрицы С по описанному выше алгоритму,
в итоге, получим следующее:, т.е. . Значит матрица А* - обратная к невырожденной матрице А.

Для вырожденной матрицы обратной матрицы не существует. Иначе если вырожденная матрица А () имеет обратную А*, тогда верными будут следующие равенства: А·А*=Е,, , .
Что в принципе не верно.

Нужно отметить, что невырожденной матрицей над Zn называется матрица, определитель которой является обратимым элементом в Zn .


§2. Обратимые матрицы над полем Zp

В данном параграфе попытаемся вывести формулу для подсчета количества обратимых матриц в поле Zp, где p – простое.

1. Формула для подсчета обратимых матриц порядка 2.

Будем рассматривать матрицы .

Алгебраическое дополнение к элементу есть определитель матрицы порядка 1, т.е. . Алгебраическое дополнение к элементу есть определитель матрицы порядка 1, т.е. .

Нужно найти количество всех невырожденных матриц
(когда ). При этом

(1.1)

Формулу выведем в 2 этапа.

1) Пусть (р-1 штук), (р-1 штук),

(по р штук) (1.2).

Тогда количество матриц, удовлетворяющих данным условиям, вычисляется по формуле

(р-1)2р2 (1.3)

Мы утверждаем, что по этой же формуле вычисляется количество матриц, определитель которых не обращается в нуль, при условии, что , .

В условии (1.2) не учитываются матрицы вида с неравным нулю определителем, количество которых нужно прибавить.
Но сосчитали матрицы вида с определителем обращающимся в нуль, количество которых нужно вычесть.

Докажем, что количество матриц в обоих случаях одинаково.

а) (р-1 штук), и . Из (1.1) получаем равенство . Значит . При заданном (где =1,2…р-1) элемент однозначно выражается через и (количество невырожденных матриц – р-1). Поэтому количество матриц удовлетворяющих этим условиям (р-1)3 штук.

б) , и . Значит . Отсюда . Элемент однозначно выражается через , , , которые принимаю не нулевые значения. Поэтому количество матриц удовлетворяющих этим условиям (р-1)3 штук

Значит формула (1.3) при условии (1.2) верна.

2) Пусть . Тогда , а из (1.1) получаем что и (как в первом этапе, случае а). Тогда количество таких матриц вычисляется по формуле

(р-1)2×р (1.4)

Этими этапами мы перебрали все случаи невырожденных матриц.

Складывая формулы (1.3) и (1.4) полученные в этапах 1) и 2) получаем формулу для нахождения количества обратимых матриц порядка 2 над полем Zp

(р-1)2×р×(р+1) (1.5)

2. Формула для подсчета обратимых матриц порядка 3.

Будем рассматривать матрицы .

Алгебраические дополнения к элементам , и есть определители матриц , и соответственно, порядка 2, при чем , и .

Нужно найти количество всех невырожденных матриц ().
При этом

(2.1)

Формулу выведем в 3 этапа.

1) Пусть (р-1 штук), (их количество по формуле (1.5)), (по р штук) (2.2).

Тогда количество таких матриц вычисляется по формуле

(р-1)3р5(р+1) (2.3)

Мы утверждаем, что по этой же формуле вычисляется количество матриц, определитель которых не обращается в нуль, при условии, что , .

При условии (2.2) не учитываются матрицы вида с неравным нулю определителем, количество которых нужно прибавить. Но сосчитали матрицы вида с определителем обращающимся в нуль, количество которых нужно вычесть.

Докажем, что количество матриц в обоих случаях одинаково:

а) (р-1 штук), и . Из (2.1) получаем равенство .

а1) Пусть =0. Тогда и. Значит элементов всего р-1 штук, количество невырожденных матриц - (р-1)2р(р+1). Т.к то из выражения получаем равенство , т.е. хотя бы один из этих элементов не равен нулю. Пусть . Из того, что получаем .Элементом , принимающим любое значение, можем однозначно задать элемент . Поэтому количество матриц удовлетворяющих этим условиям (р-1)4×р2×(р+1) штук.

а2) Если ¹0, .Тогда и . Значит элементов всего р-1 штук, количество невырожденных матриц - (р-1)2р(р+1). Т.к , то, из выражения получаем . Пусть . Домножим равенство () на . Заменим на (из того, что ). Получим равенство . Вынесем за скобки и т.к. делаем вывод, что . Значит и (). Поэтому количество матриц удовлетворяющих этим условиям (р-1)5×р×(р+1) штук.

а3) Если ¹0, и получаем (р-1)4×р2×(р+1) штук матриц удовлетворяющих этим условиям (рассуждение как в пункте а1)

а4) Если ¹0, , и получаем
(р-1)5×р×(р+1) штук матриц удовлетворяющих этим условиям (рассуждение как в пункте а2)

а5) Если ¹0, , и . Из того, что получаем . Пусть . Равенство () умножим на и заменим на (). Получим равенство . Вынося за скобки (), замечаем, что элемент однозначно выражается через ( - р-1 штук). Но тогда тоже выражается через эти элементы. Поэтому количество матриц удовлетворяющих этим условиям (р-1)6×р×(р+1)штук.

Таким образом, общее количество матриц удовлетворяющих условию пункта а) подсчитывается по формуле
(р-1)4×р×(р+1)×(р2+2р-1) (получается суммированием формул полученных в пунктах а1-а5).

б) (р-1 штук), ((р-1)2×р×(р+1)) штук). Т.к. , значит (2.4)

б1) Пусть =0. Тогда из (2.4) выводится равенство

(2.5)

а из (2.5) получим . Распишем (2.5): . Т.е. однозначно выражается через элемент , которых может быть р штук, и через элементы , , , , . Поэтому количество матриц удовлетворяющих этим условиям (р-1)4×р2×(р+1).

б2) Если ¹0, .Тогда получим опять равенство (2.5) и из него. Элементов всего р-1 штук. Т.к , то получаем что . Пусть . Умножив равенство (2.5) на , выражая и произведя замену на получим равенство . А т.к. и делаем вывод, что и выражаются через все остальные элементы матрицы. Поэтому количество матриц удовлетворяющих этим условиям
(р-1)5×р×(р+1) штук.

б3) Если ¹0, и получаем (р-1)4×р2×(р+1) матриц удовлетворяющих этим условиям (рассуждения как в
пункте б1)

б4) Если ¹0, , и получаем
(р-1)5×р×(р+1) матриц удовлетворяющих этим условиям (рассуждения как в пункте б2)

б5) Пусть ¹0, , и . Из того, что , получаем . Пусть . Тогда преобразовывая (2.4) получаем, что однозначно выражается через и все остальные элементы.

Поэтому количество матриц удовлетворяющих этим условиям (р-1)6×р×(р+1) штук.

Таким образом, общее количество матриц удовлетворяющих условию пункта б) подсчитывается по формуле
(р-1)4×р×(р+1)×(р2+2р-1) (получается суммированием формул полученных в пунктах б1-б5).

Значит формула (р-1)3р5(р+1) для случая 1) при условии (2.2) верна.

2) Пусть , (количество их р-1), (количество высчитывается по формуле (1.5)) и (по р штук). Тогда из (2.1) получаем

.

Тогда количество таких матриц вычисляется по формуле

(р-1)3р4(р+1) (2.6)

Мы утверждаем, что по этой же формуле вычисляется количество матриц, определитель которых не обращается в нуль, при условии, что , и .

Но при этих условиях не учитываются матрицы вида с неравным нулю определителем, количество которых нужно прибавить. Но сосчитали матрицы вида с определителем обращающимся в нуль, количество которых нужно вычесть.

Докажем, что количество матриц в обоих случаях одинаково:

а) , и . Из (2.1) получаем равенство , , а из того что получаем что, например, элемент однозначно выражается через элемент (р штук) и все остальные элементы. А значит количество матриц с данными условиями (р-1)4р2(р+1).

б) , и . Из (2.1) получаем равенство , . А из можем однозначно выразить, например, элемент через элемент (р штук) и все остальные элементы. А значит количество матриц с данными условиями (р-1)4р2(р+1).

3) Пусть , , (количество их p-1), (количество высчитывается по формуле (1.5)) и (по р штук).

Тогда количество таких матриц вычисляется по формуле

(р-1)[(р-1)2р(р+1)]×р×р×р (2.7)

Этими этапами мы перебрали все случаи невырожденных матриц порядка 3. складывая формулы (2.3), (2.6) и (2.7), полученные в этапах 1), 2) и 3) получаем формулу для нахождения количества обратимых матриц порядка 3матриц над полем Zp

(р-1)3р3(р+1)(р2+р+1) (2.8)

3. Общая формула для подсчета обратимых матриц над полем Zp.

Используя алгоритм, описанный в предыдущих пунктах, для выведения формулы подсчета количества обратимых матриц, можем получить частные формулы для матриц произвольных порядков.

Например:

Для матриц порядка 4:

(р-1)4р6(р+1)(р2+р+1)(р32+р+1).

Для матриц порядка 5:

(р-1)5р10(р+1)(р2+р+1)(р32+р+1)( р432+р+1), и т.д.

Анализируя полученные результаты, можем сделать выводы, что общая формула для получения количества обратимых матриц порядка n над полем Zp выглядит так:

Данную формулу тождественными преобразованиями можно привести к виду:


§3. Обратимые матрицы над кольцом Zn

Из теоремы доказанной в § 1 следует, что для определителей матриц A и B выполняется равенство |A·B|=|A|·|B|.

Для обратимых матриц A и B следует A·B=E.Следовательно |A·B|=|A|·|B|=|E|=1.

Таким образом, получаем: определитель обратимой матрицы является обратимым элементом.

Попытаемся сосчитать количество обратимых матриц над некоторыми кольцами вычетов по составному модулю.

Обратимые матрицы над Z4.

*0123
00000
10123
20202
30321

Всего различных матриц второго порядка над Z4: 44=256.

В Z4 обратимыми элементами являются 1и3. Рассмотрим сколько обратимых матриц с определителем равным 1: |A|=ad-bc=1.

Разобьем на следующие варианты:

1. ad=3. Возможные случаи:

1) a=1 Ù d=3,

2) a=3 Ù d=1,

bc=2. Возможные случаи:

1) b=1 Ù c=2,

2) b=2 Ù c=1,

3) b=2 Ù c=3,

4) b=3 Ù c=2.

Получили с данным условием 8 обратимых матриц.

2. ad=2.Возможно 4 случая (см. предыдущий пункт).

bc=1. Возможные случаи:

1) b=c=1,

2) b=c=3.

Получили с данным условием 8 обратимых матриц.

3. ad=1. Возможно 2 случая (см. предыдущий пункт).

bc=0. Возможные случаи:

1) b=0 Ù c=1,

2) b=0 Ù c=2,

3) b=0 Ù c=3,

4) b=1 Ù c=0,

5) b=2 Ù c=0,

6) b=3 Ù c=0,

7) b=c=0,

8) b=c=2.

Получили сданным условием 16 обратимых матриц.

4. ad=0. Возможно 8 случаев (см. предыдущий пункт).

bc=3. Возможно 2 случая (см. первый пункт).

Получили с данным условием 16 обратимых матриц.

Таким образом, по данной классификации получаем 8+8+16+16+16=48 обратимых матриц, определитель которых равен 1. Аналогичную классификацию можно составить для обратимых матриц с определителем равным 3, и число таких матриц будет также равно 48.

Следовательно, из 256 квадратных матриц второго порядка над Z4 обратимыми являются 96.

Обратимые матрицы над Z6.

*012345
0000000
1012345
2024024
3030303
4042042
5054321

Всего различных матриц второго порядка над Z6: 64=1296.

В Z6 обратимыми элементами являются 1 и 5. Аналогично рассмотрим, сколько обратимых матриц с определителем равным 1:
|A|=ad-bc=1.

Разобьем на следующие варианты:

1. ad=5. Возможные случаи:

1) a=1 Ù d=5,

2) a=5 Ù d=1,

bc=4. Возможные случаи:

1) b=1 Ù c=4,

2) b=4 Ù c=1,

3) b=2 Ù c=5,

4) b=5 Ù c=2,

5) b=c=2,

6) b=c=4.

Получили с данным условием 12 обратимых матриц.

2. ad=4.Возможно 6 случаев (см. предыдущий пункт).

bc=3. Возможные случаи:

1) b=3 Ù c=1,

2) b=1 Ù c=3,

3) b=3 Ù c=5,

4) b=5 Ù c=3,

5) b=c=3.

Получили с данным условием 30 обратимых матриц.

3. ad=3. Возможно 5 случаев (см. предыдущий пункт).

bc=2. Возможные случаи:

1) b=2 Ù c=1,

2) b=1 Ù c=2,

3) b=2 Ù c=4,

4) b=4 Ù c=2,

5) b=4 Ù c=5,

6) b=5 Ù c=4.

Получили с данным условием 30 обратимых матриц.

4. ad=2. Возможно 6 случаев (см. предыдущий пункт).

bc=1. Возможные случаи:

1) b=c=1,

2) b=c=5.

Получили с данным условием 12 обратимых матриц.

5. ad=1. Возможно 2 случая (см. предыдущий пункт).

bc=0. Возможные случаи:

1) b=0 Ù c=1,

2) b=0 Ù c=2,

3) b=0 Ù c=3,

4) b=0 Ù c=4,

5) b=0 Ù c=5,

6) b=1 Ù c=0,

7) b=2 Ù c=0,

8) b=3 Ù c=0,

9) b=4 Ù c=0,

10) b=5 Ù c=0,

11) b=2 Ù c=3,

12) b=3 Ù c=2,

13) b=3 Ù c=4,

14) b=4 Ù c=3,

15) b=c=0.

Получили с данным условием 30 обратимых матриц.

6. ad=0. Возможно 15 случаев (см. предыдущий пункт).

bc=5. Возможно 2 случая (см. первый пункт).

Получили с данным условием 30 обратимых матриц.

Таким образом по данной классификации получаем 12+30+30+12+30+30=144 обратимых матриц, определитель которых
равен 1. Аналогичную классификацию можно составить для обратимых матриц с определителем равным 5, и число таких матриц будет также равно 144.

Следовательно, из 1296 квадратных матриц второго порядка над Z6 обратимыми являются 288.

Обратимые матрицы над Z8

*01234567
000000000
101234567
202460246
303634725
404040404
505274163
606420642
707654321

Всего различных матриц второго порядка над Z8: 84=4096.

В Z8 обратимыми элементами являются 1, 3, 5 и 7. Аналогично рассмотрим, сколько обратимых матриц с определителем равным 1
|A|=ad-bc=1.

Аналогично предыдущим пунктам будем придерживаться той же классификации:

1. ad=7. Возможно 4 случая.

bc=6. Возможно 8 случаев.

Получили с данным условием 32 обратимых матрицы.

2. ad=6. Возможно 8 случаев.

bc=5. Возможно 4 случая.

Получили с данным условием 32 обратимых матрицы.

3. ad=5. Возможно 4 случая.

bc=4. Возможно 12 случаев.

Получили с данным условием 48 обратимых матриц.

4. ad=4. Возможно 12 случаев.

bc=3. Возможно 4 случая.

Получили с данным условием 48 обратимых матриц.

5. ad=3. Возможно 4 случая.

bc=2. Возможно 8 случаев.

Получили с данным условием 32 обратимых матрицы.

6. ad=2. Возможно 8 случаев.

bc=1. Возможно 4 случая.

Получили с данным условием 32 обратимых матрицы.

7. ad=1.Возможны 4 случая .

bc=0. Возможно 20 случаев.

Получили с данным условием 80 обратимых матриц.

8. ad=0. Возможно 20 случаев.

bc=7. Возможно 4 случая.

Получили с данным условием 80 обратимых матриц.

Таким образом, обратимых матриц, определитель которых
равен 1 —384.

Следовательно, из 4096 квадратных матриц второго порядка над Z8 обратимыми являются 1536.

Обратимые матрицы над Z9

*012345678
0000000000
1012345678
2024681357
3036036036
4048372615
5051627384
6063063063
7075318642
8087654321

Всего различных матриц второго порядка над Z9: 94=6561.

В Z9 обратимыми элементами являются 1, 2, 4, 5, 7 и 8.

1. ad=8. Возможно 6 случаев.

bc=7. Возможно 6 случаев.

Получили с данным условием 36 обратимых матриц.

2. ad=7. Возможно 6 случаев.

bc=6. Возможно 12 случаев.

Получили с данным условием 72 обратимых матриц.

3. ad=6. Возможно 12 случаев.

bc=5. Возможно 6 случаев.

Получили с данным условием 72 обратимых матриц.

4. ad=5. Возможно 6 случаев.

bc=4. Возможно 6 случаев.

Получили с данным условием 36 обратимых матриц.

5. ad=4. Возможно 6 случаев.

bc=3. Возможно 12 случаев.

Получили с данным условием 72 обратимых матриц.

6. ad=3. Возможно 12 случаев.

bc=2. Возможно 6 случаев.

Получили с данным условием 72 обратимых матриц.

7. ad=2. Возможно 6 случаев.

bc=1. Возможно 6 случаев.

Получили с данным условием 36 обратимых матриц.

8. ad=1. Возможно 6 случаев.

bc=0. Возможно 21 случай.

Получили с данным условием 126 обратимых матриц.

9. ad=0. Возможно 21 случай.

bc=8. Возможно 6 случаев.

Получили с данным условием 126 обратимых матриц.

Таким образом, обратимых матриц, определитель которых равен 1 -648.

Следовательно, из 6561 квадратных матриц второго порядка над Z9 обратимыми являются 3888.

Обратимые матрицы над Z10

*0123456789
00000000000
10123456789
20246802468
30369258147
40482604826
50505050505
60628406284
70741852963
80864208642
90987654321

Всего различных матриц второго порядка над Z10: 104=1000.

В Z10 обратимыми элементами являются 1, 3, 7 и 9.

1. ad=9. Возможно 4 случая.

bc=8. Возможно 12 случаев.

Получили с данным условием 48 обратимых матриц.

2. ad=8. Возможно 12 случаев.

bc=7. Возможно 4 случая.

Получили с данным условием 48 обратимых матриц.

3. ad=7. Возможно 4 случая.

bc=6. Возможно 12 случаев.

Получили с данным условием 48 обратимых матриц.

4. ad=6. Возможно 12 случаев.

bc=5. Возможно 9 случаев.

Получили с данным условием 108 обратимых матриц.

5. ad=5. Возможно 9 случаев.

bc=4. Возможно 12 случаев.

Получили с данным условием 108 обратимых матриц.

6. ad=4. Возможно 12 случаев.

bc=3. Возможно 4 случая.

Получили с данным условием 48 обратимых матриц.

7. ad=3. Возможно 4 случая.

bc=2. Возможно 12 случаев.

Получили с данным условием 48 обратимых матриц.

8. ad=2. Возможно 12 случаев.

bc=1. Возможно 4 случая.

Получили с данным условием 48 обратимых матриц.

9. ad=1. Возможно 4 случая.

bc=0. Возможно 27 случаев.

Получили с данным условием 108 обратимых матриц.

10. ad=0. Возможно 27 случаев.

bc=9. Возможно 4 случая.

Получили с данным условием 108 обратимых матриц.

Таким образом, обратимых матриц, определитель которых
равен 1 —720.

Следовательно, из 10000 квадратных матриц второго порядка над Z10 обратимыми являются 2880.

Используя выше изложенный метод, было также вычислено количество обратимых матриц для колец вычетов по модулям:10, 12, 14, 15, 16, 18, 20, 21. В результате всех вычислений были получены следующие данные (ниже также использованы формулы полученные в §2):

Znформулаколичество
2(p-1)2p(p+1)6
3(p-1)2p(p+1)48
4-96
5(p-1)2p(p+1)480
6-288
7(p-1)2p(p+1)2016
8-1536
9-3888
10-2880
11(p-1)2p(p+1)13200
12-4608
13(p-1)2p(p+1)26208
14-12096
15-23040
16-24576
17(p-1)2p(p+1)78336
18-23328
19(p-1)2p(p+1)123120
20-43520
21-96768

В итоге анализа полученных результатов эмпирическим путем была получена следующая формула для вычисления количества обратимых матриц второго порядка над кольцом вычетов по произвольному модулю.

Пусть Zn -кольцо вычетов по модулю n, причем n=p1k1p2k2pmkm ,

Тогда количество обратимых матриц второго порядка равно:

(p1-1)2(p2-1)2…(pm-1)2p1p2…pm(p1+1)(p2+1)…(pm+1)(p14)k1-1(p24)k2-1…(pm4)km-1

Литература

1. Бухштаб А.А. Теория чисел. М.: Просвещение, 1966.

2. Куликов Л.Я. Алгебра и теория чисел. М.: Высшая школа, 1979.

3. Курош А. Г. Курс высшей алгебры. М.: Наука, 1975.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно