Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Алгебра матриц

Тип Реферат
Предмет Математика
Просмотров
1543
Размер файла
160 б
Поделиться

Ознакомительный фрагмент работы:

Алгебра матриц

Основные понятия

Определение. Прямоугольная таблица из m строк и n столбцов, заполненная некоторыми математическими объектами, называется – матрицей.

Мы будем рассматривать числовые матрицы. Числа, составляющие матрицу, называются ее элементами. Для обозначения матрицы, как правило, используются круглые скобки. При записи, в общем виде элементы матрицы обозначаются одной буквой с двумя индексами, из которых первый указывает номер строки, а второй – номер столбца матрицы. Например, матрица

.
.

В сокращенной записи: А=(аij); где аij - действительные числа, i=1,2,…m;

j=1,2,…,n (кратко , . ). Произведение называют размером матрицы.

Матрица называется квадратной порядка n, если число ее строк равно числу столбцов и равно n:

Упорядоченный набор элементов а1122,…,аnn называется главной диагональю, в свою очередь, а1n2,n-1,…,аn1 – побочной диагональю матрицы. Квадратная матрица, элементы которой удовлетворяют условию:

называется диагональной, т.е. диагональная матрица имеет вид:

Диагональная матрица порядка n называется единичной, если все элементы ее главной диагонали равны 1. Матрица любого размера называется нулевой или нуль матрицей, если все ее элементы равны нулю. Единичная матрица обозначается буквой Е, нулевая – О. Матрицы имеют вид:

.

Линейные операции над матрицами

Определение. Суммой матриц А=(аij) и B=(bij) одинаковых размеров называется матрица С=(сij) тех же размеров, такая что cij=aij+bij для всех i и j.

.

Таким образом, чтобы сложить матрицы А и В, надо сложить их элементы, стоящие на одинаковых местах. Например,

A + B = = C

Определение. Произведение матрицы А на число l называется матрица lА=(l аij), получаемая умножением всех элементов матрицы А на число l.

Например, если и l=5, то

Разность матриц А и В можно определить равенством А-В=А+(-1)В.

Рассмотренные операции называются линейными.

Отметим некоторые свойства операций.

Пусть А,В,С – матрицы одинакового размера; a,b - действительные числа.

А+В = В+А – коммутативность сложения.

(А+В)+С = А+(В+С) – ассоциативность сложения.

Матрица О, состоящая из нулей, играет роль нуля: А+О=А.

Для любой матицы А существует противоположная –А, элементы которой отличаются от элементов А знаком, при этом А+( -А)=О.

a(bА) = (ab)А = (aА)b. 6. (a+b)А = aА+bА.

7. a(А+В) = aА+aВ. 8. 1* А = А. 9. 0 * А = 0.

Умножение матриц

В матричной алгебре важную роль играет операция умножения матриц, это весьма своеобразная операция.

Определение. Произведением матрицы А=(аij) размера и прямоугольной матрицы B=(bij) размера называется прямоугольная матрица С=(сij) размера , такая что cij=ai1+b1j+ ai2+b2j+…+ aik+bkj; , .

Таким образом, элемент произведения матриц А и В, стоящий в i-ой строке и j-ом столбце, равен сумме произведений элементов i-ой строки первой матрицы А на соответствующие элементы j-ого столбца второй матрицы В т.е.

.

Произведение С=АВ определено, если число столбцов матрицы А равно числу строк матрицы В. Это условие, а также размеры матриц можно представить схемой:

Очевидно, что операция умножения квадратных матриц всегда определена.

Примеры. Найдем произведения матриц АВ и ВА, если они существуют.

1. , .

2. , .

Таким образом, коммутативный (переместительный) закон умножения матриц, вообще говоря, не выполняется, т.е. В частном случае коммутативным законом обладает произведение любой квадратной матрицы А n-го порядка на единичную матрицу Е такого же порядка, т.е.

3. , .

Для этих матриц произведение как АВ ,так и ВА не существует.

,

Получим , ВА – не существует.

Свойства умножения матриц.

Пусть А,В,С – матрицы соответствующих размеров (т.е. произведения матриц определены), l - действительное число. Тогда на основании определений операций и свойств действительных чисел имеют место следующие свойства:

(АВ)С = А(ВС) – ассоциативность.

(А+В)С = АС+ВС – дистрибутивность.

А(В+С) = АВ+АС – дистрибутивность.

l(АВ) = (lА)В = А(lВ).

ЕА = АЕ = А, для квадратных матриц единичная матрица Е играет роль единицы.

Приведем пример доказательства лишь одного свойства. Докажем, например, свойство 3.

Пусть для А=(аij), B=(bij), C=(cij) произведения матриц определены. Найдем элемент i-ой строки и j-го столбца матрицы А(В+С). Это будет число

аi1(b1j+c1j)+ аi2(b2j+c2j)+…+аin(bnj+cnj) =

i1b1j+ai2b2j+…+ainbnj)+ (аi1c1j+ai2c2j+…+aincnj).

Первая сумма в правой части равенства равна элементу из i-ой строки и j-го столбца матрицы АВ, а вторая сумма равна элементу из i-ой строки и j-го столбца матрицы АС. Рассуждение верно при любых i и j, то свойство 3 доказано.

Упражнение 1. Проверьте свойство ассоциативности 1 для матриц:

, , .

Упражнение 2. Проверьте свойство дистрибутивности 2 для матриц:

, , .

Упражнение 3. Найти матрицу А3, если .

Вырожденные и невырожденные матрицы

Определение. Матрица называется вырожденной, если ее определитель равен нулю, и невырожденной, если определитель матрицы отличен от нуля.

Пример. , = 16-15 = 1 0; А – невырожденная матрица.

, = 12-12 = 0; А – вырожденная матрица.

Теорема. Произведение матриц есть вырожденная матрица тогда и только тогда, когда хотя бы один из множителей есть вырожденная матрица.

Необходимость. Пусть АВ – вырожденная матрица, т.е. =0. Тогда, в силу того, что определитель произведения матриц равен произведению определителей перемножаемых матриц, имеем Это значит, что хотя бы одна из матриц А или В является вырожденной.

Достаточность. Пусть в произведении АВ матрица А вырожденная, т.е. =0. Найдем , т.к. =0; итак, =0; АВ - вырожденная матрица.

Замечание. Доказанная теорема справедлива для любого числа множителей.

Обратная матрица

Определение. Квадратная матрица В называется обратной по отношению к матрице А такого же размера, если

АВ = ВА = Е. (1)

Пример. , .

В – матрица обратная к А.

Теорема. Если для данной матрицы обратная существует, то она определяется однозначно.

Предположим, что для матрицы А существуют матрицы Х и У, такие, что

АХ = ХА = Е (2)

АУ = УА = Е (3)

Умножая одно из равенств, например, АХ = Е слева на У, получим У(АХ) = УЕ. В силу ассоциативности умножения имеем (УА)Х = УЕ. Поскольку УА = Е, то ЕХ = УЕ, т.е. Х = У. Теорема доказана.

Теорема (необходимое и достаточное условие существования обратной матрицы).

Обратная матрица А-1 существует тогда и только тогда, когда исходная матрица А невырожденная.

Необходимость. Пусть для матрицы А существует обратная А-1, т.е. А А-1 = А-1А = Е. Тогда, ½А А-1½= ½А½½А-1½=½Е½=1, т.е. ½А½0 и ½А-1½0; А – невырожденная.

Достаточность. Пусть дана невырожденная матрица порядка n

,

так что ее определитель 0. Рассмотри матрицу, составленную из алгебраических дополнений к элементам матрицы А:

,

ее называют присоединенной к матрице А.

Следует обратить внимание на то, что алгебраические дополнения к элементам i-ой строки матрицы А стоят в i-ом столбце матрицы А*, для .

Найдем произведения матриц АА* и А*А. Обозначим АА* через С, тогда по определению произведения матриц имеем: Сij= аi1А 1j + аi2А 2j + … + аinАnj; i = 1, n: j = 1, n.

При i = j получим сумму произведений элементов i - ой строки на алгебраические дополнения этой же строки, такая сумма равняется значению определителя. Таким образом Сij= |А| = D - это элементы главной диагонали матрицы С. При ij, т.е. для элементов Сijвне главной диагонали матрицы С, имеем сумму произведений всех элементов некоторой строки на алгебраические дополнения другой строки, такая сумма равняется нулю. Итак, = АА*

Аналогично доказывается, что произведение А на А* равно той же матрице С. Таким образом, имеем А*А = АА* = С. Отсюда следует, что

Поэтому, если в качестве обратной матрицы взять , то Итак, обратная матрица существует и имеет вид:

.

Пример. Найдем матрицу, обратную к данной:

Находим D = |А| = -1 ¹ 0, А существует. Далее находим алгебраические дополнения элементов матрицы А:

А = = 0 ; А = = -1; А = = 3;

А = = -3; А = = 3; А = = -4;

А = = 1; А = = -1; А = = 1;

А =


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 368 оценок star star star star star
среднее 4.9 из 5
ДВГУПС
очень ответственно подошел к работе! Надеюсь на дальнейшее сотрудничество
star star star star star
Технический нефтегазовый институт
Спасибо Оксане, очень быстрое и качественное исполнение работы. Защита прошла на отлично. ...
star star star star star
ГУЗ
Спасибо Большое! Реферат был написан в короткие сроки и очень доступным языком
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Исследуйте на сходимость числовой знакоположительный ряд

Решение задач, Математика

Срок сдачи к 20 янв.

только что

4 задания

Контрольная, Статистика

Срок сдачи к 18 янв.

только что

Выполнить курсовой. Финансы организаций. Р-00271

Курсовая, Экономика

Срок сдачи к 22 янв.

только что

Английский

Решение задач, Английский

Срок сдачи к 15 янв.

1 минуту назад

В данный момент требуется узнать стоимость

Курсовая, Бухгалтерский учет

Срок сдачи к 1 апр.

1 минуту назад

Решить 2 задачи и ответить на вопросы.

Решение задач, Электротехника

Срок сдачи к 17 янв.

2 минуты назад

Выполнить курсовой. Финансы организаций. Р-00271

Курсовая, Финансы

Срок сдачи к 22 янв.

2 минуты назад

8 заданий под вариантами 7,17,27,37,47,57,67,77

Контрольная, Математика

Срок сдачи к 14 янв.

2 минуты назад

Тема в задании нужно сделать курсовую по организации пар Севастополь...

Курсовая, Бухгалтерская и налоговая отчетность

Срок сдачи к 15 янв.

2 минуты назад

Выполнить Индивидуальный проект, Обществознание

Контрольная, Обществознание

Срок сдачи к 18 янв.

4 минуты назад

Сделать 3 призентации

Презентация, SMM в спорте

Срок сдачи к 18 янв.

4 минуты назад

сравнительный анализ мер валютного контроля

Презентация, Таможенное дело

Срок сдачи к 15 янв.

4 минуты назад

Тесты,Экзамены

Другое, Все

Срок сдачи к 19 янв.

5 минут назад

Решить контрольную

Контрольная, Биология

Срок сдачи к 30 янв.

5 минут назад

Технологическая (проектно-технологическая) практика

Отчет по практике, Педагогическое образование

Срок сдачи к 16 февр.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно