Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Антенный усилитель с подъёмом АЧХ

Тип Реферат
Предмет Наука и техника
Просмотров
1063
Размер файла
403 б
Поделиться

Ознакомительный фрагмент работы:

Антенный усилитель с подъёмом АЧХ

Министерство общего и профессионального образования

Российской Федерации

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ

(ТУСУР)

Кафедра радиоэлектроники и защиты информации (РЗИ)

Антенный усилитель с подъёмом АЧХ.

Пояснительная записка к курсовому проекту по дисциплине “Схемотехника аналоговых электронных устройств”

Выполнил

студент гр.148-3

Размолодин Д.Б.

Проверил

преподаватель каф. РЗИ

Титов А.А.

2001

1.Введение

В данной курсовой работе требуется рассчитать антенный усилитель с подъёмом амплитудно-частотной характеристики. Необходимость усиливать сигнал, принимаемый антенной, возникает из-за того, что достаточно велики потери в кабеле, связывающем антенну и приёмное устройство. К тому же потери значительно возрастают с ростом частоты.

Для того, чтобы компенсировать эти потери сигнал после приёма предварительно усиливают, а затем направляют в приёмный тракт. При этом усилитель должен иметь подъём АЧХ в области высоких частот. В данной работе требовалось обеспечить подъём равный 6дБ на октаву.

При проектировании любого усилителя основной трудностью является обеспечение заданного усиления в рабочей полосе частот. В данном случае полоса частот составляет 400-800 МГц. С учётом того, что усилительные свойства транзисторов значительно ухудшаются с ростом частоты, то разработка устройства с подъёмом АЧХ на таких частотах является непростой задачей.

Наиболее эффективным представляется использование в данном случае межкаскадных корректирующих цепей 4-го порядка. Такая цепь позволяет делать коэффициент усиления с подъёмом до 6 дБ в полосе частот от 0 до fв, что очень важно для данного устройства. Использование этих корректирующих цепей даёт возможность брать транзисторы с граничной частотой , т.е. менее дорогостоящие, без ухудшения параметров всего усилителя.

2. Техническое задание

Усилитель должен отвечать следующим требованиям:

Рабочая полоса частот: 400-800 МГц

Линейные искажения

в области нижних частот не более 3 дБ

в области верхних частот не более 3 дБ

Коэффициент усиления 25 дБ с подъёмом области верхних частот 6 дБ

Амплитуда выходного напряжения Uвых=2.5 В

Диапазон рабочих температур: от +10 до +60 градусов Цельсия

Сопротивление источника сигнала и нагрузки Rг=Rн=50 Ом

3. Расчётная часть

3.1 Структурная схема усилителя.

Учитывая то, что каскад с общим эмиттером позволяет получать усиление до 20 дБ, оптимальное число каскадов данного усилителя равно двум. Предварительно распределим на каждый каскад по 15 дБ. Таким образом, коэффициент передачи устройства составит 30 дБ, из которых 25 дБ требуемые по заданию, а 5 дБ будут являться запасом усиления.

Структурная схема, представленная на рисунке 3.1, содержит кроме усилительных каскадов корректирующие цепи, источник сигнала и нагрузку.

Рисунок 3.1

3.2 Распределение линейных искажений в области ВЧ

Расчёт усилителя будем проводить исходя из того, что искажения распределены следующим образом: выходная КЦ–1 дБ, выходной каскад с межкаскадной КЦ–1.5 дБ, входной каскад со входной КЦ–0.5 дБ. Таким образом, максимальная неравномерность АЧХ усилителя не превысит 3 дБ.

Расчёт выходного каскада

3.3.1 Выбор рабочей точки

Координаты рабочей точки можно приближённо рассчитать по следующим формулам [1]:

, (3.3.1)

где (3.3.2)

, (3.3.3)

где – начальное напряжение нелинейного участка выходных

характеристик транзистора, .

Так как в выбранной мной схеме выходного каскада сопротивление коллектора отсутствует, то . Рассчитывая по формулам 3.3.1 и 3.3.3, получаем следующие координаты рабочей точки:

мА,

В.

Найдём мощность, рассеиваемую на коллекторе мВт.

3.3.2 Выбор транзистора

Выбор транзистора осуществляется с учётом следующих предельных параметров:

граничной частоты усиления транзистора по току в схеме с ОЭ

;

предельно допустимого напряжения коллектор-эмиттер

;

предельно допустимого тока коллектора

;

предельной мощности, рассеиваемой на коллекторе

.

Этим требованиям полностью соответствует транзистор КТ996Б-2. Его основные технические характеристики приведены ниже.

Электрические параметры:

Граничная частота коэффициента передачи тока в схеме с ОЭ МГц;

Постоянная времени цепи обратной связи пс;

Статический коэффициент передачи тока в схеме с ОЭ ;

Ёмкость коллекторного перехода при В пФ;

Индуктивность вывода базы нГн;

Индуктивность вывода эмиттера нГн.

Предельные эксплуатационные данные:

Постоянное напряжение коллектор-эмиттер В;

Постоянный ток коллектора мА;

Постоянная рассеиваемая мощность коллектора Вт;

Температура перехода К.

Нагрузочные прямые по переменному и постоянному току для выходного каскада представлены на рисунке 3.2. Напряжение питания выбрано равным 10В.

Рисунок 3.2

3.3.3 Расчёт эквивалентной схемы транзистора

Поскольку рабочие частоты усилителя заметно больше частоты , то из эквивалентной схемы можно исключить входную ёмкость, так как она не влияет на характер входного сопротивления транзистора. Индуктивность же выводов транзистора напротив оказывает существенное влияние и потому должна быть включена в модель. Эквивалентная высокочастотная модель представлена на рисунке 3.3. Описание такой модели можно найти в [2].

Рисунок 3.3

Параметры эквивалентной схемы рассчитываются по приведённым ниже формулам.

Входная индуктивность:

, (3.3.3)

где –индуктивности выводов базы и эмиттера.

Входное сопротивление:

, (3.3.4)

где , причём , и – справочные данные.

Крутизна транзистора:

, (3.3.5)

где , , .

Выходное сопротивление:

. (3.3.6)

Выходная ёмкость:

. (3.3.7)

В соответствие с этими формулами получаем следующие значения элементов эквивалентной схемы:

нГн;

пФ;

Ом

Ом;

А/В;

Ом;

пФ.

3.3.4 Расчёт цепей термостабилизации

Существует несколько вариантов схем термостабилизации. Их использование зависит от мощности каскада и от того, насколько жёсткие требования к термостабильности. В данной работе рассмотрены три схемы термостабилизации: пассивная коллекторная, активная коллекторная и эмиттерная.

3.3.4.1 Пассивная коллекторная термостабилизация

Данный вид термостабилизации (схема представлена на рисунке 3.4) используется на малых мощностях и менее эффективен, чем две другие, потому что напряжение отрицательной обратной связи, регулирующее ток через транзистор подаётся на базу через базовый делитель.

Рисунок 3.4

Расчёт, подробно описанный в [3], заключается в следующем: выбираем напряжение (в данном случае В) и ток делителя (в данном случае , где – ток базы), затем находим элементы схемы по формулам:

; (3.3.8)

, (3.3.9)

где – напряжение на переходе база-эмиттер равное 0.7 В;

. (3.3.10)

Получим следующие значения:

Ом;

Ом;

Ом.

3.3.4.2 Активная коллекторная термостабилизация

Активная коллекторная термостабилизация используется в мощных каскадах и является очень эффективной, её схема представлена на рисунке 3.5. Её описание и расчёт можно найти в [2].

Рисунок 3.5

В качестве VT1 возьмём КТ315А. Выбираем падение напряжения на резисторе из условия (пусть В), затем производим следующий расчёт:

; (3.3.11)

; (3.3.12)

; (3.3.13)

; (3.3.14)

, (3.3.15)

где – статический коэффициент передачи тока в схеме с ОБ транзистора КТ315А;

; (3.3.16)

; (3.3.17)

. (3.3.18)

Получаем следующие значения:

Ом;

мА;

В;

кОм;

А;

А;

кОм;

кОм.

Величина индуктивности дросселя выбирается таким образом, чтобы переменная составляющая тока не заземлялась через источник питания, а величина блокировочной ёмкости – таким образом, чтобы коллектор транзистора VT1 по переменному току был заземлён.

3.3.4.3 Эмиттерная термостабилизация

Для выходного каскада выбрана эмиттерная термостабилизация, схема которой приведена на рисунке 3.6. Метод расчёта и анализа эмиттерной термостабилизации подробно описан в [3].

Рисунок 3.6

Расчёт производится по следующей схеме:

1.Выбираются напряжение эмиттера и ток делителя (см. рис. 3.4), а также напряжение питания ;

2. Затем рассчитываются .

3. Производится поверка – будет ли схема термостабильна при выбранных значениях и . Если нет, то вновь осуществляется подбор и .

В данной работе схема является термостабильной при В и мА. Учитывая то, что в коллекторной цепи отсутствует резистор, то напряжение питания рассчитывается по формуле В. Расчёт величин резисторов производится по следующим формулам:

; (3.3.19)

; (3.3.20)

. (3.3.21)

Для того, чтобы выяснить будет ли схема термостабильной производится расчёт приведённых ниже величин.

Тепловое сопротивление переход – окружающая среда:

, (3.3.22)

где , – справочные данные;

К – нормальная температура.

Температура перехода:

, (3.3.23)

где К – температура окружающей среды (в данном случае взята максимальная рабочая температура усилителя);

– мощность, рассеиваемая на коллекторе.

Неуправляемый ток коллекторного перехода:

, (3.3.24)

где – отклонение температуры транзистора от нормальной;

лежит в пределах А;

– коэффициент, равный 0.063–0.091 для германия и 0.083–0.120 для кремния.

Параметры транзистора с учётом изменения температуры:

, (3.3.25)

где равно 2.2(мВ/градус Цельсия) для германия и

3(мВ/градус Цельсия) для кремния.

, (3.3.26)

где (1/ градус Цельсия).

Определим полный постоянный ток коллектора при изменении температуры:

, (3.3.27)

где

. (3.3.28)

Для того чтобы схема была термостабильна необходимо выполнение условия:

,

где . (3.3.29)

Рассчитывая по приведённым выше формулам, получим следующие значения:

Ом;

Ом;

Ом;

Ом;

К;

К;

А;

Ом;

;

Ом;

А;

А.

Как видно из расчётов условие термостабильности выполняется.

3.4 Расчёт входного каскада по постоянному току

3.4.1 Выбор рабочей точки

При расчёте требуемого режима транзистора промежуточных и входного каскадов по постоянному току следует ориентироваться на соотношения, приведённые в пункте 3.3.1 с учётом того, что заменяется на входное сопротивление последующего каскада. Но, при малосигнальном режиме, за основу можно брать типовой режим транзистора (обычно для маломощных ВЧ и СВЧ транзисторов мА и В). Поэтому координаты рабочей точки выберем следующие мА, В. Мощность, рассеиваемая на коллекторе мВт.

3.4.2 Выбор транзистора

Выбор транзистора осуществляется в соответствии с требованиями, приведенными в пункте 3.3.2. Этим требованиям отвечает транзистор КТ371А. Его основные технические характеристики приведены ниже.

Электрические параметры:

граничная частота коэффициента передачи тока в схеме с ОЭ ГГц;

Постоянная времени цепи обратной связи нс;

Статический коэффициент передачи тока в схеме с ОЭ ;

Ёмкость коллекторного перехода при В пФ;

Индуктивность вывода базы нГн;

Индуктивность вывода эмиттера нГн.

Предельные эксплуатационные данные:

Постоянное напряжение коллектор-эмиттер В;

Постоянный ток коллектора мА;

Постоянная рассеиваемая мощность коллектора Вт;

Температура перехода К.

3.4.3 Расчёт эквивалентной схемы транзистора

Эквивалентная схема имеет тот же вид, что и схема представленная на рисунке 3.3. Расчёт её элементов производится по формулам, приведённым в пункте 3.3.3.

нГн;

пФ;

Ом

Ом;

А/В;

Ом;

пФ.

3.4.4 Расчёт цепи термостабилизации

Для входного каскада также выбрана эмиттерная термостабилизация, схема которой приведена на рисунке 3.7.

Рисунок 3.7

Метод расчёта схемы идентичен приведённому в пункте 3.3.4.3 с той лишь особенностью что присутствует, как видно из рисунка, сопротивление в цепи коллектора . Это сопротивление является частью корректирующей цепи и расчёт описан в пункте 3.5.2.

Эта схема термостабильна при В и мА. Напряжение питания рассчитывается по формуле В.

Рассчитывая по формулам 3.3.19–3.3.29 получим:

кОм;

кОм;

кОм;

кОм;

К;

К;

А;

кОм;

;

Ом;

мА;

мА.

Условие термостабильности выполняется.

3.4 Расчёт корректирующих цепей

3.4.1 Выходная корректирующая цепь

Расчёт всех КЦ производится в соответствии с методикой описанной в [4]. Схема выходной корректирующей цепи представлена на рисунке 3.8. Найдём – выходное сопротивление транзистора нормированное относительно и .

(3.5.1)

.

Рисунок 3.8

Теперь по таблице приведённой в [4] найдём ближайшее к рассчитанному значение и выберем соответствующие ему нормированные величины элементов КЦ и , а также –коэффициент, определяющий величину ощущаемого сопротивления нагрузки и модуль коэффициента отражения .

Найдём истинные значения элементов по формулам:

; (3.5.2)

; (3.5.3)

. (3.5.4)

нГн;

пФ;

Ом.

Рассчитаем частотные искажения в области ВЧ, вносимые выходной цепью:

, (3.5.5)

,

или дБ.

3.5.2 Расчёт межкаскадной КЦ

Схема МКЦ представлена на рисунке 3.9. Это корректирующая цепь четвёртого порядка, нормированные значения её элементов выбираются из таблицы, которую можно найти в [4], исходя из требуемой формы и неравномерности АЧХ. Нужно учесть, что элементы, приведённые в таблице, формируют АЧХ в диапазоне частот от 0 до , а в данной работе каждая КЦ должна давать подъём 3дБ на октаву. Следовательно, чтобы обеспечить такой подъём нужно выбирать элементы, которые дают подъём 6дБ в диапазоне от 0 до .

Рисунок 3.9

Нормированные значения элементов КЦ, приведённые ниже, выбраны для случая, когда неравномерность АЧХ цепи не превышает ±0.5дБ.

Эти значения рассчитаны для случая, когда ёмкость слева от КЦ равна 0, а справа – ¥. Произведём пересчёт значений по приведённым ниже формулам [4] с учётом того, что ёмкость слева равна выходной ёмкости транзистора VT1.

, (3.5.6)

, (3.5.7)

, (3.5.8)

, (3.5.9)

. (3.5.10)

В формулах 3.5.6-3.5.10 – это нормированная выходная ёмкость транзистора VT1. Нормировка произведена относительно выходного сопротивления VT1 и циклической частоты :

.

Получаем следующие пересчитанные значения:

Все величины нормированы относительно верхней циклической частоты и выходного сопротивления транзистораVT1. После денормирования получим следующие значения элементов КЦ:

мкГн;

Ом;

пФ;

пФ;

нГн.

При подборе номиналов индуктивность следует уменьшить на величину входной индуктивности транзистора. Нужно также отметить, что и стоят в коллекторной цепи входного каскада.

Найдём суммарный коэффициент передачи корректирующей цепи и транзистора VT2 в области средних частот по формуле [2]:

, (3.5.7)

где – коэффициент усиления транзистора по мощности в режиме двухстороннего согласования;

– нормированное относительно выходного сопротивления транзистора VT1 входное сопротивление каскада на транзисторе VT2, равное параллельному включению входного сопротивления транзистора и сопротивления базового делителя .

;

Ом;

.

Коэффициент усиления равен:

или дБ.

Неравномерность коэффициента усиления не превышает 1дБ.

3.5.3 Расчёт входной КЦ

Схема входной КЦ представлена на рисунке 3.10. Её расчёт, а также табличные значения аналогичны описанным в пункте 3.5.1. Отличие в том, что табличные значения не требуют пересчёта, так как ёмкость слева от КЦ равна 0, а справа – ¥. Поэтому денормировав эти значения мы сразу получим элементы КЦ. Денормируем величины относительно сопротивления генератора сигнала и . Расчёт такой цепи также можно найти в [4].

Рисунок 3.10

Табличные значения (искажения в области ВЧ не более ±0.5 дБ):

После денормирования получаем следующие величины:

нГн;

Ом;

пФ;

пФ;

нГн.

Индуктивность практически равна входной индуктивности транзистора VT1, поэтому её роль будут выполнять выводы транзистора.

Расчёт суммарного коэффициента передачи корректирующей цепи и транзистора VT1 в области средних частот произведём по формуле 3.5.7, заменив на , которое находится по аналогичным формулам, и, взяв коэффициент усиления по мощности:

.

Нужно не забывать, что все нормированные величины в этом пункте нормированы относительно .

Ом;

Получим коэффициент усиления:

или дБ.

Неравномерность коэффициента усиления не превышает 1дБ. Таким образом, суммарные искажения в области ВЧ не превысят 2.5дБ.

Коэффициент передачи всего усилителя:

дБ.

3.6 Расчёт разделительных и блокировочных ёмкостей

На рисунке 3.11 приведена принципиальная схема усилителя. Рассчитаем номиналы элементов обозначенных на схеме. Расчёт производится в соответствии с методикой описанной в [1]

Рисунок 3.11

Рассчитаем сопротивление и ёмкость фильтра по формулам:

, (3.6.1)

где – напряжение питания усилителя равное напряжению питания выходного каскада;

– напряжение питания входного каскада;

– соответственно коллекторный, базовый токи и ток делителя входного каскада;

, (3.6.2)

где – нижняя граничная частота усилителя.

кОм;

пФ.

Дроссель в коллекторной цепи выходного каскада ставится для того, чтобы выход транзистора по переменному току не был заземлен. Его величина выбирается исходя из условия:

. (3.6.3)

мкГн.

Так как ёмкости, стоящие в эмиттерных цепях, а также разделительные ёмкости вносят искажения в области нижних частот, то их расчёт следует производить, руководствуясь допустимым коэффициентом частотных искажений. В данной работе этот коэффициент составляет 3дБ. Всего ёмкостей три, поэтому можно распределить на каждую из них по 1дБ.

Найдём постоянную времени, соответствующую неравномерности 1дБ по формуле:

, (3.6.4)

где – допустимые искажения в разах.

нс.

Блокировочные ёмкости и можно рассчитать по общей формуле, взяв для каждой соответствующую крутизну.

. (3.6.5)

пФ;

пФ.

Величину разделительного конденсатора найдём по формуле:

, (3.6.6)

где – выходное сопротивление транзистора VT2.

пФ.

4. Заключение

Рассчитанный усилитель имеет следующие технические характеристики:

1. Рабочая полоса частот: 400-800 МГц

2. Линейные искажения

в области нижних частот не более 3 дБ

в области верхних частот не более 2.5 дБ

3. Коэффициент усиления 30дБ с подъёмом области верхних частот 6 дБ

4. Амплитуда выходного напряжения Uвых=2.5 В

5. Питание однополярное, Eп=10 В

6. Диапазон рабочих температур: от +10 до +60 градусов Цельсия

Усилитель рассчитан на нагрузку Rн=50 Ом

Усилитель имеет запас по усилению 5дБ, это нужно для того, чтобы в случае ухудшения, в силу каких либо причин, параметров отдельных элементов коэффициент передачи усилителя не опускался ниже заданного уровня, определённого техническим заданием.

РТФ КП 468730.001.ПЗ
ЛитМассаМасштаб
ИзмЛистNдокум.Подп.ДатаАНТЕННЫЙ
ВыполнилРазмолодинУCИЛИТЕЛЬ
ПроверилТитов
ЛистЛистов
ТУСУР РТФ
ПринципиальнаяКафедра РЗИ
схемагр. 148-3

Позиция

Обозн.

НаименованиеКолПримечание
Конденсаторы ОЖ0.460.203 ТУ
С1КД-2-22пФ±5%1
С2КД-2-27пФ±5%1
С3КД-2-7,5пФ±51
С4КД-2-91пФ±5%1
C5КД-2-1,2пФ±5%1
С6КД-2-0,5пФ±5%1
С7КД-2-510пФ±5%1
С8КД-2-5,1пФ±5%1
С9КД-2-2,7пФ±5%1
Катушки индуктивности 1
L1Индуктивность 11нГн±10%1
L2Индуктивность 1,75нГн±10%1Роль этой индуктивности выполняют выводы транзистора
L3Индуктивность 0,11мкГн±10%1
L4Индуктивность 51,5нГн±10%1
L5Индуктивность 20мкГн±10%1
L6Индуктивность 9,1нГн ±10%1
Резисторы ГОСТ 7113-77
R1МЛТ–0,125-27Ом±10%
R2МЛТ–0,125-2,4кОм±10%1
R3МЛТ–0,125-1,5кОм±10%1
R4МЛТ–0,125-1,3кОм±10%1
R5МЛТ–0,125-270Ом±10%1
R6МЛТ–0,125-1кОм±10%1
R7МЛТ–0,125-820Ом±10%1
R8МЛТ–0,125-560Ом±10%1
R9МЛТ–0,125-91Ом±10%1
Транзисторы
VT1КТ371А1
VT2КТ996Б-21
РТФ КП 468730.001 ПЗ
ЛитМассаМасштаб
ИзмЛистNдокум.Подп.ДатаАНТЕННЫЙ
ВыполнилРазмолодинУСИЛИТЕЛЬУ
Провер.Титов
ЛистЛистов
ТУСУР РТФ
Перечень элементовКафедра РЗИ
гр. 148-3

Литература

Красько А.С., Проектирование усилительных устройств, методические указания

Титов А.А. Расчет корректирующих цепей широкополосных усилительных каскадов на биполярных транзисторах – http://referat.ru/download/ref-2764.zip

Болтовский Ю.Г., Расчёт цепей термостабилизации электрического режима транзисторов, методические указания

Титов А.А., Григорьев Д.А., Расчёт элементов высокочастотной коррекции усилительных каскадов на полевых транзисторах, учебно-методическое пособие


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно