Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Спиральная антенна

Тип Реферат
Предмет Наука и техника
Просмотров
886
Размер файла
433 б
Поделиться

Ознакомительный фрагмент работы:

Спиральная антенна

СОДЕРЖАНИЕ.

1.Режимы излучения спиральной антенны 2

2.Расчетные соотношения для цилиндрической спиральной антенны 5

3.Плоская арифметическая спиральная антенна 8

4.Равноугольная (логарифмическая) спиральная антенна 11

5.Пример расчета цилиндрической спиральной антенны 14

Список использованной литературы 16

1. Режимы излучения спиральной антенны.

1.1. Спиральная ан­тенна представляет собой свернутый в спираль провод (1), который питается через коаксиальный фидер (2) (рис. 1, а). Внутренний провод фидера соединяется со спиралью, а внешняя оболочка фидера — с металлическим диском (3). Последний служит рефлектором, а также препятствует проникновению токов с внутренней на наружную поверхность оболочки фидера. Спираль может быть не только цилиндриче­ской, как на рис. 1, а, но и конической (рис. 1, в) и плоской (рис. 7) или выпуклой.

Рис.1. Спиральные антенны:

а - цилиндрическая; б – развёрнутый виток; в – коническая.

Цилиндрическая спиральная антенна характеризуется следующими геометрическими размерами: радиусом а, шагом s, длиной одного витка, числом витков p, длиной по оси , углом подъема .

Как видно из схемы антенны и изображения развернутого витка спирали (рис. 1, б), между размерами антенны имеются следующие зависимости:

, ,

1.2. Спиральные антенны используются на УКВ в режиме бегущих волн с осевым излучением и вращающейся поляризацией. Такой режим требует определенных соотношений между размерами антенны и дли­ной волны. Выявим эти соотношения.

Ток высокой частоты, проходя но спирали, вызывает излучение электромагнитных волн. Достаточно десяти-одиннадцати витков, что­бы вся подводимая к антенне энергия излучалась в пространство и не происходило отражения волн от конца спирали. Такая бегущая волна тока распространяется вдоль провода спирали с фазовой скоростью , т. е., с замедлением .

Рис.2.Виток спиральной антенны

Волна проходит один виток (от сечения 1 к сечению5 на рис. 2) за время.Электро­магнитные волны, возбуждаемые током спирали, распространяются в воздухе со скоростью с и длиной волны.

Если бы все витки сливались, то достаточно было установить время, равным периоду колебаний, т. е., чтобы поля любой пары противоположных элементов (1-3,2-4) спирали совпадали по фазе и полностью складывались в точках оси 0'0", которая равноудалена от контура витка. Это объясняется тем, что в пределах одного витка ам­плитуды тока практически одинаковая, а различие в фазе на уголв диаметрально противоположных сечениях витка (1-3, 2-4) компенсируется противоположным направлением токов в них.

В случае спирали цилиндрической формы с шагом s условие мак­симального осевого излучения формулируется несколько иначе: за вре­мя прохождения тока по витку электромагнитная волна долж­на пройти в воздухе расстояние большее, чем длина волны, на шаг s:

; соответственно

(1)

При таком коэффициенте замедления токи в любых двух сечениях, расположенных под углом 90° (например, в 1 и 2, 2 и 3, 3 и 4, 4 и 5), вызывают на оси О'О" поля, которые сдвинуты по фазе на 90°, и волны, которые поляризованы под углом 90°. В результате сложения этих линейно-поляризованных волн получаются волны с круговой поляриза­цией.

1.3. Опытным путем установлено, что с увеличением длины волны фазовая скорость уменьшается, а коэффициент замедления увеличивается во столько же раз. Благодаря этому условие осевого излучения (1) поддерживается в широком диапазоне волн:

(рис. 3, а).

Рис.3.ДН цилиндрической спиральной антенны

при различной длине витка спирали

При длине витка набег фазы в 360° происходит при про­хождении волной тока нескольких витков спирали. При этом антенна уподобляется электрически малой рамке из N витков провода, которая имеет ДН в виде восьмерки с максимумами излучения в плоскости, перпендикулярной оси спирали (рис. 3, б). Если, то на одном витке спирали укладывается две, три и более волн, а это приво­дит к наклонному излучению и конусной форме пространственной ДН (рис. 3, в).

1.4. Наиболее выгодный режим — осевого излучения, который, как известно, требует длины витка и обеспечивает полосу пропус­кания . Эта полоса может быть значительно расширена путем перехода к конической антенне (рис, 1, б), в которой участок (2) со средней длиной витка удовлетворяет условию, а крайние участки (1, 3) с большими () и меньшими () длинами витков удовлетворяют аналогичным условиям, но для мак­симальной и минимальной длин волн рабочего диапазона:

,. В зависимости от ра­бочей длины волны интенсивно излучает только одна из зон спирали и только этой активной зоной определяется острота ДН.

2. Расчетные соотношения для цилиндрической спиральной ан­тенны.

2.1. Чтобы получить максимальный КНД, нужно установить оптимальный коэффициент замедления, при котором в направле­нии оси спирали 0'0" (рис. 2) поля первого и последнего витков на­ходятся в противофазе. Иначе говоря, необходимо дополнить условие (1) задержкой волны тока спирали на полупериод Т/2, а в каждом витке ее — на :

.

Отсюда находим оптимальный коэффициент замедления вдоль провода спирали:

, (2)

При этом, правда, получается эллиптическая поляризация, но так как, то коэффициентвесьма незначительно от­личается от и полученную поляризацию можно считать круговой. Полагая = 1,2 ... 1,3, определим из выражения (2) угол подъема спирали, соответствующий оптимальным условиям работы антенны

:

Отсюда

, (3)

Длина спирали подбирается в соответствии с оптимальным ко­эффициентом замедления вдоль оси спирали. При =1,2…1,3 имеем, что соответствует углу подъема спирали =12 ... 16° и числу витков р = 5 ... 14.

2.2. Рассматривая каждый виток спирали как элементарный излу­чатель с фазовым центром на оси 0'0", определяем функцию направлен­ности антенны как произведение функции направленности одного витка на множитель решетки из р элементов. Так как р велико, а направленность одного витка мала, то принимаем. В резуль­тате имеем

(4)

Угол , как и прежде, отсчитывается от перпендикуляра к оси линей­ной решетки.

2.3. Для спиральных антенн оптимальных размеров опытным путемустановлены следующие формулы:

ширина диаграммы направленности

, (5)

коэффициент направленного действия

, (6)

входное сопротивление

, (7)

2.4. Итак, цилиндрические и конические спиральные антенны широкополосные с осевым излучением волн круговой поляризации. Направленность цилиндрических спиралей средняя, а конических — ниже средней (не вся спираль участвует в излучении на данной часто­те), но последние обладают большей диапазонностью. Применяются и те и другие как самостоятельные антенны в диапазонах дециметровых а метровых волн, а также как облучатели антенн сантиметровых волн.

3. Плоская арифметическая спиральная антенна.

3.1. В процес­се развития радиотехники все больше требуются антенно-фидерные устройства, рассчитанные на работу в очень широком диапазоне ча­стот и притом без всякой перестройки. Частотная независимость таких антенно-фидерных устройств основана на принципе электродинамиче­ского подобия.

Этот принцип состоит в том, что основные параметры антенны (ДН и входное сопротивление) остаются неизменными, если изменение дли­ны волны сопровождается прямо пропорциональным изменением ли­нейных размеров активной области антенны. При соблюдении данного условия антенна может быть ча­стотно-независимой в неограничен­ном диапазоне волн. Однако разме­ры излучающей структуры конеч­ны и рабочий диапазон волн лю­бой антенны тоже ограничен.

Из этой группы антенн рассмот­рим плоские арифметические и равноугольные спирали и логариф­мически-периодические антенны.

Рис.4. Арифметическая спираль

3.2. Арифметическая спираль вы­полняется в виде плоских металли­ческих лент или щелей в металли­ческом экране (рис. 4). Уравне­ние этой спирали в полярных координатах

где — радиус-вектор, отсчитываемый от полюса О; а — коэффициент, характеризующий приращение радиус-вектора на каждую единицу приращения полярного угла ; b — начальное значение радиус- вектора.

Спираль может быть двухзаходной, четырёхзаходной и т. д. Если спираль двухзаходная, то для ленты (щели) /, показанной штриховы­ми линиями, угол отсчитывается от нуля, а для ленты //, показанной сплошными линиями, — от 180°, т. е. спираль образована совершенно идентичными лентами, повернутыми на 180° друг относительно друга.

Начальные точки ленты / соответствуют радиус-векторам, которые обозначим и . Следовательно, ширина ленты. Описав один оборот, лента занимает поло­жение D, в котором радиус-вектор больше начального на. На этом отрезке ВD размещаются две ленты и два зазора, и если ширина их одинаковая, то, Отсюда определяем коэффициент.

3.3. Питание спирали может быть противофазным, как на рис. 4, или синфазным. В первом случае токи через зажимы А, В, соединяю­щие ленты с фидером, имеют противоположные фазы. Путь тока в лен­те / больше, чем в ленте //, на полвитка. Например, в сечении СD лента // попадает, описав полвитка, а лента / — один виток, в сечение ЕF—соответственно полтора и два витка и т. д. Поскольку длина витка по мере развертывания спирали возрастает, увеличивается рас­хождение фазы токов в лентах. Обозначив средний диаметр витка находим сдвиг по фазе, соответствующий длине полувитка:

Если к этому прибавить начальный сдвиг, равный , то получим результирующее расхождение по фазе токов в смежных элементах двухпроводной линии

За счет второго слагаемого угол отличен от , а в таких условиях электромагнитные волны излучаются, даже если зазор между лентами мал по сравнению с длиной волны.

Интенсивно излучает только та часть спирали, в которой токи смеж­ных элементов обеих лент совпадают по фазе:

Подставляя , находим, что средний диаметр первого «резонанс­ного» кольца , а периметр этого кольца .Сред­ний диаметр и периметр второго (k=2), третьего (k=3) и т. д. «ре­зонансных» колец соответственно в три, пять, ... раз больше. Так как излучение радиоволн спиралью вызывает большое затухание тока от ее начала к концу, то интенсивно излучает только первое резонансное кольцо, а остальная, внешняя часть спирали как бы «отсекается» {явление отсечки излучающих токов}.

3.4. Активная часть спирали представляет наибольший интерес и по другой причине. Затухание тока, вызванное излучением, настолько велико, что отражение от конца спирали практически отсутствует, т. е. ток в спирали распределяется по закону бегущих волн. К тому же пе­риметр первого резонансного кольца равен длине волны . В таких условиях, как показано в п. 1, происходит осевое излучение с вращаю­щейся поляризацией, которое в данном случае наиболее желательно.

Диаметр спирали должен быть достаточно велик, чтобы на макси­мальной волне диапазона сохранилось первое «резонансное» кольцо (),а с уменьшением длины волны это кольцо долж­но сжиматься до тех пор () , пока оно еще может полностью разме­ститься вокруг узла питания. Тогда в пределах отноше­ние среднего периметра первого «резонансного» кольцак длине волны остается постоянным и тем самым выполняется основноеусловие сохранения направленных свойств антенны в широком диапазоне волнПравда, направленность арифметической спирали невелика (60 ... 80°), поскольку в излучении волн участвует, по существу, только та часть спирали, которая имеет средний пери­метр, равный .

Второе условие получения диапазонной антенны—постоянство входного сопротивления — достигается здесь тем, что спираль ра­ботает в режиме бегущей волны тока. Это сопротивление активное (100—200 Ом). При питании от коаксиального фидера ( Ом) согласование производят ступенчатым или плавным трансформатором.

3.5. Спираль излучает по обе стороны своей оси. Чтобы сделать ан­тенну однонаправленной, ленточную спираль помещают на диэлектри­ческой пластине толщиной , другую сторону которой металлизи­руют. Если же спираль щелевая, то ее вырезают на стенке металличе­ского короба; тогда противоположная стенка короба играет роль отра­жающего экрана, а сам короб является резонатором. Чтобы уменьшить его глубину, короб заполняют диэлектриком.

Одна из типовых спиралей имеет диаметр 76 мм, выполнена на пла­стине из эпоксидного диэлектрика, снабжена резонатором глубиной 26 мм, работает в диапазоне волн 7.5 ... 15 см при , ширине диаграммы направлен­ности 2' = 60... 80° и коэффициенте эллиптично­сти в направлении макси­мума главного лепестка менее 3 дБ, т. е. практиче­ски поляризацию можно считать круговой. Плоские спиральные антенны удоб­но изготовлять печатным способом на тонких листах диэлектрика с малыми потерями на высоких частотах.

4. Равноугольная (логарифмическая) спиральная антенна.

4.1. Широкодиапазонность антенн такого вида основана на том, что если отношение линейных размеров излучателя к длине волны оста­ется постоянным и излучающая структура полностью определяется ее полярными углами, то направленность антенны оказывается абсолютно независимой от частоты.

Рис.5. Логарифмическая спираль

Равноугольная спираль (рис. 5) строится в полярных координа­тах по уравнению

где — радиус-вектор в начале спирали (); а — коэффициент,

определяющий степень увеличения радиус-вектора с увеличением полярного угла .

Двухзаходная спираль образуется двумя проводниками или щеля­ми, но в отличие от архимедовой спиральной антенны толщина их не­постоянна и возрастает с увеличением угла . Пусть начальный радиус-вектор на внутренней границе 1-го проводника равен и на внешней. Тогда уравнениями граничных спиралей являются

(8)

. (9)

4.2. Для оценки диапазонности логарифмической спирали исследуем зависимость отношения от угла . Числитель дроби ,а так как ,

то зна­менатель дроби и искомоеотношение,(10)

где . Следовательно, изменение длины волны вызывает только смещение активной области спирали на некоторый угол , а отношение и направленное действие антенны от этого не меняются. Если бы спираль была бесконечной, то диапазонность антенны была безграничной, но реальная антенна имеет конечную
длину и эффективно работает в ограниченном, хотя и очень широком диапазоне волн ,причем определяется максимальной длиной спирали, а — минимальны­ми размерами узла питания.

4.3. Логарифмическая спираль работает в режиме бегущих волн (вследствие излучения ток затухает к концу спирали), и ее входное сопротивление Ом.

Рис.6. Щелевая плоская логарифмическая спиральная

антенна

Типовая щелевая логарифмическая спираль (рис. 6) имеет мак­симальную длину ветви 42,3 см, начальный радиус 0,51 см и коэффи­циент = 0,303. Антенна излучает волны с вращающейся поляриза­цией в диапазоне см и не превышает двух при пита­нии спирали от 50-Ом коаксиального кабеля. Параметры антенны на­ходятся в допустимых пределах даже при двадцатикратном изменении длины волны.

5.Пример расчета спиральной цилиндрической антенны.

Для построения диаграммы направленности антенны, пользуясь экспериментальными данными исследования спиральных антенн [1.Рис.1.3.XXV.], вычисляю по формулам (4) – (7) функцию направленности антенны.

Учитывая:

подставим все значения в формулу (4):

.


Используя приложение ”MathCAD 7 professional” получил следующий вид диаграммы направленности антенны:

.

По формуле 5 рассчитываю ширину диаграммы направленности:

21.586.

Коэффициент направленного действия :

70.768.

Входное сопротивление:

Итак, цилиндрические и конические спиральные антенны широкополосные с осевым излучением волн круговой поляризации. Направленность цилиндрических спиралей средняя, а конических — ниже средней (не вся спираль участвует в излучении на данной часто­те), но последние обладают большей диапазонностью. Применяются и те и другие как самостоятельные антенны в диапазонах дециметровых и метровых волн, а также как облучатели антенн сантиметровых волн.

Список использованной литературы.

1.Айзенберг Г.З. Антенны ультракоротких волн . «Связьиздат»,М.1957.700 с

2.Лавров А.С.,Резников Г.Б. Антенно-фидерные устройства. «Сов.радио»,М.,1974,368 с.

3.Белоцерковский Г.Б. Основы радиотехники и антенны.В 2-х ч.

Ч. 2.Антенны-М.:Радио и связь,1983-296с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
154470
рейтинг
icon
3197
работ сдано
icon
1385
отзывов
avatar
Математика
Физика
История
icon
150479
рейтинг
icon
5996
работ сдано
icon
2715
отзывов
avatar
Химия
Экономика
Биология
icon
105824
рейтинг
icon
2100
работ сдано
icon
1312
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
59 883 оценки star star star star star
среднее 4.9 из 5
Тгу
Спасибо Ольге за выполнение работы. Очень грамотный специалист. Буду обращаться только к ней.
star star star star star
Московский Государственный Университет им.Ломоносова
Работа получилась замечательная! Второй раз обращаюсь к Ксении, и я явно не последний. Луч...
star star star star star
МГУТУ
Отличный исполнитель. Работа выполнена досрочно. Все сделанно на отлично. Спасибо огромное)))
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Тема: Производство и ассортимент желатиновых капсул Кол-во стр

Курсовая, Технология изготовления лекарственных форм

Срок сдачи к 16 апр.

1 минуту назад

Решить 4 задания по электротехнике

Решение задач, электротехника и электроника

Срок сдачи к 16 апр.

2 минуты назад

Выполнить 4 задания по статистике

Другое, Статистика

Срок сдачи к 17 мая

4 минуты назад

Создать файлы в World и в Exel, ответить на вопросы в файлах

Другое, Офисные прикладные программы

Срок сдачи к 1 мая

4 минуты назад

Решение 3 задания

Решение задач, Математика

Срок сдачи к 13 апр.

4 минуты назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени: 11 апреля 2025 г. 07:13

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Press the down arrow key to interact with the calendar and select a date. Press the question mark key to get the keyboard shortcuts for changing dates.

Файлы (при наличии)

    это быстро и бесплатно