Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Граничные условия на стыке двух диэлектриков. Теорема о циркуляции

Тип Реферат
Предмет Математика
Просмотров
490
Размер файла
78 б
Поделиться

Ознакомительный фрагмент работы:

Граничные условия на стыке двух диэлектриков. Теорема о циркуляции

.

М.И. Векслер, Г.Г. Зегря

Любая граница раздела двух сред может считаться плоской на достаточно малом участке. Кроме того, в пределах достаточно малого участка поле векторов , , можно считать однородным на каждой из сторон. Составляющие указанных векторов Dn, En, Pn, перпендикулярные к границе, называются нормальными, а , , , параллельные границе, - тангенциальными компонентами.

На незаряженной границе двух диэлектриков нормальные и тангенциальные компоненты преобразуются следующим образом:

(36)

Левое соотношение получается из теоремы Гаусса, примененной к области в форме очень тонкого параллелепипеда, серединной плоскостью которого является граница раздела диэлектриков. Для получения второго соотношения привлекается теорема о циркуляции

(37)

Контуром служит узкая прямоугольная рамка, плоскость которой перпендикулярна к границе раздела, рассекающей рамку пополам. Левая часть равенства есть , а правая равна нулю из электростатического уравнения Максвелла (). Эаметим, что теорема о циркуляции - это математический закон, применимый к любому векторному полю, как и теорема Гаусса.

Задача. Плоскость xy представляет собой границу раздела диэлектрик с проницаемостью ε1 (z<0) - воздух (z>0). Напряженность электрического поля в воздухе составляет E2, а вектор составляет угол θ с осью z и не имеет y-компоненты. Найти , в обеих средах и поверхностный связанный заряд. Вычислить также циркуляцию вектора по прямоугольному контуру длины L, лежащему в плоскости xz.

Решение: По условию,

откуда сразу

По правилам преобразования нормальных и тангенциальных компонент,

Dn1 = Dn2 = ε0E2cosθ
=

С учетом общего соотношения , получаем:

En1 =
=

Теперь можно полностью выписать в диэлектрике:

Поляризованность в воздухе отсутствует, а в диэлектрике:

=
=

При вычислении поверхностного связанного заряда нужна только нормальная компонента, а именно:

Вычисление циркуляции вектора даст

Знак выбирается в зависимости от напрaвления обхода контура. Заметим, что если бы мы считали циркуляцию , то получили бы ноль. Так как мы знаем с обеих сторон плоскости xy, (в области z<0 ) можно записать окончательный ответ для циркуляции:

Проверка выполнения законов преобразования компонент и на границе служит в некоторых случаях дополнительным "тестом" на корректность того или иного решения.

Задача. Часть площади плоского конденсатора заполнена диэлектриком ε1, другая часть ε2. Найти , в обеих частях конденсатора при приложении напряжения U. Расстояние между обкладками d.

Ответ: всюду; и в 1-й и 2-й частях, соответственно. Направление полей - всюду перпеидикулярно плоскостям обкладок.

Комментарий: граница раздела диэлектриков перпендикулярна обкладкам. По обе стороны этой границы поле параллельно границе и одинаково по величине: нормальная к данной границе составляющая при этом вообще отсутствует. Таким образом, выполнено условие для тангенциальных компонент вектора .

Обобщение данной задачи: пусть в плоском конденсаторе с обкладками x1 и x2, проницаемость изменяется как . Тогда эквипотенциалями являются плоскости x = const. Плотность заряда обкладки такого конденсатора зависит от координат; cуммарный же заряд равен

(38)

Частный случай - ε меняется только в направлении, перпендикулярном полю (например, кусочно). Аналогичную ситуацию можно рассмотреть в сферическом и цилиндрическом конденсаторах ( или ).

Задача. В вакууме на расстоянии l от плоской границы с диэлектриком проницаемости ε расположен небольшой шарик, заряженный зарядом q. Найти поверхностную плотность связанного заряда на границе раздела как функцию расстояния r от проекции центра шарика на плоскость.

Решение Вводим систему координат таким образом, что ось z перпендикулярна плоскости раздела сред xy. Тогда заряд q имеет координаты (0, 0, z).

Будем искать решение в виде

φ1 =
φ2 =

Значок 1 отвечает полупространству, в котором находится заряд.

Потенциал указанного вида подчиняется уравнению Пуассона. Действительно, для полупространства без заряда Δφ2 = 0, так как особенность функции φ2(z, r) находится вообще вне этого полупространства. Что касается φ1(z, r), то , поскольку первый член в точности соответствует потенциалу точечного заряда, а второй дает ноль, так как его особенность не попадает в полупространство содержащее заряд. Заметим, что, если бы полупространство с зарядом было заполнено диэлектриком (ε1), то это ε1 следовало бы поместить в знаменатель первого члена выражения для φ1.

Найдем z-компоненту поля, соответствущую введенному потенциалу:

Ez1 =
Ez2 =

Поскольку z-компонента является нормальной компонентой к границе раздела, для нее должно быть выполнено условие Dz1 = Dz2, то есть

Помимо этого требования, необходимо обеспечить непрерывность потенциала, а именно

φ1(0, r) = φ2(0, r)

Два вышеуказанных условия приводят к соотношениям

–l+B1l = –ε A2 l
1+B1 = A2

из которых имеем

Поверхностный связанный заряд найдется как

Проинтегрировав σ' по площади, получаем полный связанный заряд

Список литературы

1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с.

2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с.

3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 950 оценок star star star star star
среднее 4.9 из 5
ННГУ им. Лобачевского
спасибо большое за проделанную работу) очень вам благодарна) всем советую, не пожалеете)
star star star star star
ВятГУ
Большое спасибо за работу! Получила зачет, все отлично, единственный коментарий был о том ...
star star star star star
Томский политехнический университет
С небольшими замечаниями, но зачтено.В доработке не нуждается. Спасибо.
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Задача на расчёт балок на изгиб

Решение задач, Сопротивление материалов

Срок сдачи к 22 дек.

только что

Написать курсовую работу.

Курсовая, Организация деятельности департамента маркетинга

Срок сдачи к 8 янв.

1 минуту назад

Сделать реферат

Реферат, Международное частное право

Срок сдачи к 22 дек.

1 минуту назад

Сделать презентацию

Презентация, Английский язык

Срок сдачи к 23 дек.

1 минуту назад

Максим, добрый вечер. Подскажите, пожалуйста

Другое, Менеджмент

Срок сдачи к 4 янв.

2 минуты назад

Составить схему

Другое, Социология

Срок сдачи к 21 дек.

4 минуты назад

Выполнить практическую работу

Другое, Метрология, стандартизация и сертификация

Срок сдачи к 21 дек.

5 минут назад

Решить 12 задач по статике

Решение задач, Механика

Срок сдачи к 27 дек.

6 минут назад

Информационные технологии в ПД

Реферат, Информационные технологии в ПД

Срок сдачи к 21 дек.

6 минут назад

Информационные технологии в ПД

Контрольная, Информационные технологии в ПД

Срок сдачи к 21 дек.

6 минут назад

«Формирование у школьников интереса к различным видам...

Курсовая, Теория и методика физического воспитания

Срок сдачи к 22 дек.

8 минут назад
8 минут назад

Оформление файла презентации к ВКР

Другое, Оформление файла презентации к ВКР

Срок сдачи к 21 дек.

9 минут назад

решить 15 задач по начертательной геометрии

Чертеж, Начертательная геометрия

Срок сдачи к 22 дек.

9 минут назад

Исправить замечания по курсовой

Курсовая, Инновационный менеджент, менеджмент

Срок сдачи к 21 дек.

11 минут назад

решить задачи

Решение задач, Математическое моделирование

Срок сдачи к 21 дек.

11 минут назад

Треугольники напряжений

Решение задач, Электротехника

Срок сдачи к 23 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно