Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Металлорежущие станки

Тип Реферат
Предмет Технология машиностроения

ID (номер) заказа
2379367

200 руб.

Просмотров
1077
Размер файла
567.68 Кб
Поделиться

Ознакомительный фрагмент работы:

Введение

От современных машин требуются высокие эксплуатационные и технико-экономические характеристики, надежность работы. Проходя путь технологической обработки от исходного материала до готовой детали в машине, изделие подвергается обработке различными технологическими методами.

Одной из главных задач современного машиностроения является развитие, совершенствование и разработка новых технологических методов изготовления деталей машин. Одно из главных мест в технологическом процессе изготовления изделий занимает обработка металлов резанием.
Металлорежущие станки являются основным видом заводского оборудования, предназначенного для производства всех современных машин, приборов, инструментов и других изделий, поэтому количество металлорежущих станков, их технический уровень в значительной степени характеризует производственную мощность страны.
Существенное место занимает ускорение научно-технического прогресса на базе технического перевооружения производства, создание высокопроизводительных машин и оборудования большой единичной мощности, внедрение новой техники и материалов, прогрессивной технологии и систем машин для комплексной механизации и автоматизации производства.

Глава 1. Токарный. Назначение станков токарной группы – обработка тел вращения (детали типа валов, дисков, втулок). Виды обрабатываемых поверхностей – наружные и внутренние цилиндрические поверхности, наружные конические поверхности, торцевые поверхности, канавки, уступы, фасонные (сложного профиля), резьбовые поверхности. Главным движением в токарных станках является вращение заготовки, закрепленной в шпинделе; инструмент, закрепленный на суппорте, осуществляет прямолинейное, продольное или поперечное движения подач.
Наиболее универсальными по назначению среди станков токарной группы являются токарно-винторезные станки (рис. 1, а).

Деталь, закрепленная в патроне 1, получает вращение от коробки скоростей 2, связанной ременной передачей с валом электродвигателя, расположенного в передней тумбе станины 3. Инструмент, устанавливаемый в поворотном резцедержателе, закрепленном на суппорте 4, получает продольное и поперечное перемещения от ходового винта 5 (при нарезании резьбы резцом) или ходового валика 6 через коробку подач 7 и фартук 8. Коробка подач служит для включения, выключения, реверсирования и регулировки величины подачи, а фартук – для преобразования вращательного движения ходового винта или валика в поступательное перемещение суппорта. Задняя бабка 9 служит для поддержания заготовки, а также для закрепления и перемещения осевого инструмента, предназначенного для обработки отверстий. Иногда в токарно-винторезных станках применяют разделенный привод главного движения, тогда коробка скоростей 1 выносится из шпиндельной бабки 2 и располагается в нише станины (рис. 1,б). Токарные станки по компоновке аналогичны токарно-винторезным, но не предназначены для нарезания резьбы резцами, поэтому в них отсутствует ходовой винт.
Главный вид режущего инструмента для обработки заготовок на токарных станках – токарные резцы. Разнообразие обрабатываемых поверхностей обуславливает значительную номенклатуру токарных резцов. Основные типы токарных резцов в зависимости от технологического назначения и конструктивных особенностей приведены на рис. 2.

Рис. 2. Токарные резцы: 1 – отрезной; 2 – проходной прямой; 3 – проходной отогнутый; 4 – чистовой широкий (лопаточный); 5 – чистовой радиусный; 6 – прорезной (канавочный); 7 – проходной упорный; 8 – подрезной; 9 – фасонный призматический; 10 – галтельный; 11 – резьбовой наружный; 12 – фасочный; 13 – расточный проходной
На токарных станках выполняются различные стадии обработки поверхности; используемые при этом резцы называются черновыми, чистовыми, получистовыми. Геометрия режущей части этих резцов приспособлена к работе с большой или с малой глубиной резания. Резцы, предназначенные для обработки внутренних поверхностей называются расточными (№ 13 на рис. 2). По виду выполняемой работы различают резцы проходные – для обработки гладкой цилиндрической поверхности (внутренней или наружной) на «проход» (№ 2, 3 на рис. 2) и упорные проходные – для обработки одновременно цилиндрической поверхности и торцовой плоскости (№ 7 на рис. 2). Торцовые поверхности цилиндрических .тел на токарных станках «подрезают» так называемыми подрезными резцами (№ 8 на рис. 2), которые работают с поперечной подачей к оси вращения или от оси вращения заготовки. Отрезку заготовки ведут отрезным резцом (№ 1 на рис. 2), а образование канавок – канавочным или прорезным резцом (№ 6 на рис. 2). Резьбовые поверхности образуют резьбовыми резцами, фасонные – фасонными (№ 9 на рис. 2), фаски – фасочными, галтели – галтельными и т. д.

Рис. 3. Разновидности токарных резцов по направлению движения и подачи и по форме головки
Все резцы, работающие с продольной подачей, могут в рабочем движении перемещаться справа налево – это правые резцы (рис. 3, б), и слева направо – левые резцы (рис. 3, а). У правых резцов главная режущая кромка находится со стороны большого пальца правой руки, положенной на резец сверху, у левых резцов главная режущая кромка при аналогичном положении левой руки находится также со стороны большого пальца. Головка резца по отношению к его телу может быть отогнутой, изогнутой и оттянутой, а может совпадать по направлению с сечением тела. Тогда резцы называют прямыми (рис. 3, в), с отогнутой головкой (рис. 3, г), с оттянутой головкой (рис. 3, д) и с изогнутой головкой (рис. 3, е).
Глава 2. Сверлиный, расточной - 2А135Изготовитель вертикальных сверлильных станков моделей 2А125, 2А135, 2А150, 2Г175 -  HYPERLINK "http://stanki-katalog.ru/st_sterlitamak.htm" \o "Стерлитамакский станкостроительный завод им. Ленина" \t "_blank" Стерлитамакский станкостроительный завод, основанный в 1941 году и Завод "КиргизКабельМаш" г. Фрунзе.
История Стерлитамакского станкостроительного завода начинается 3 июля 1941 года, когда началась эвакуация Одесского станкостроительного завода в город Стерлитамак.
Уже 11 октября 1941 г. Стерлитамакский станкостроительный завод начал выпускать специальные агрегатные станки для оборонной промышленности.
В настоящее время завод выпускает металлообрабатывающее оборудование, среди которого - токарные и фрезерные станки с ЧПУ, многофункциональные обрабатывающие центры, металлообрабатывающий и режущий инструмент.
Вертикальный сверлильный станок 2А135 заменил в серийном производстве устаревший станок 2135. В новой модели обеспечивается более удобное управление коробкой соростей и подач. Улучшены эргономические показатели. Станок 2А135 был заменнен на более совершенную модель 2Н135Универсальный вертикально-сверлильный станок, модель 2А135, предназначен для работы в ремонтных и инструментальных цехах, а также в производственных цехах с мелкосерийным выпуском продукции; оснащенный приспособлениями станок может быть применен в массовом производстве.
Вертикально-сверлильный станок 2а135, с условным диаметром сверления 35 мм, используется на предприятиях с единичным и мелкосерийным выпуском продукции и предназначены для выполнения следующих операций: сверления, рассверливания, зенкования, зенкерования, развертывания, нарезания резьб и подрезки торцев ножами.
Допускает обработку деталей в широком диапазоне размеров из различных материалов с использованием инструмента из высокоуглеродистых и быстрорежущих сталей и твердых сплавов.

Наличие на станке девятискоростной коробки скоростей с диапазоном регулирования 68-100-140-195-175-400-530-750-1100 оборотов в минуту, 11-скоростной коробки подач с диапазоном регулирования от 0,115 до 1,6 мм на оборот и электрореверса обеспечивает выбор нормативных режимов резания для диаметров отверстий до 35 мм при сверлении, рассверливании, зенковании, зенкеровании, развертывании, нарезке резьбы, а также допускает использование режущего инструмента, оснащенного твердым сплавом.
Наличие на станках механической подачи шпинделя, при ручном управлении циклами работы.
Допускает обработку деталей в широком диапазоне размеров из различных материалов с использованием инструмента из высокоуглеродистых и быстрорежущих сталей и твердых сплавов.
Станки снабжены устройством реверсирования электродвигателя главного движения» что позволяет производить на них нарезание резьбы машинными метчиками при ручной подаче шпинделя»
Станок обладает высокой жесткостью, прочностью рабочих механизмов, мощностью привода и широким диапазоном скоростей резания и подач, позволяющим использовать режущий инструмент, оснащенный твердым сплавом. Наличие электрореверса, управляемого как автоматически, так и вручную, обеспечивает возможность нарезания резьбы при ручном подводе и Отводе метчика.
В конструкции вертикально-сверлильного станка модели 2А135 предусмотрено автоматическое включение движения подачи после быстрого подвода режущего инструмента к обрабатываемой детали и автоматическое выключение подачи при достижении заданной глубины сверления.
Заданная глубина сверления несквозных отверстий обеспечивается специальным механизмом останова с упором. Этот механизм является одновременно предохранительным устройством, предохраняющим механизм подач от поломок при перегрузках.
Шпиндель станка смонтирован на прецизионных подшипниках качения. Нижняя опора состоит из радиального шарикового подшипника класса АВ. В верхней опоре установлен один шариковый подшипник класса В.
Заводом предусмотрена возможность смены приводных шкивов клнноременной передачи, что позволяет устанавливать пределы чисел оборотов шпинделя в соответствии с технологическими задачами.
Для сокращения вспомогательного времени на станке модели 2А135 обеспечена возможность включения и выключения подачи тем же штурвалом, который осуществляет ручное быстрое перемещение шпинделя.
Категория размещения 4 по ГОСТ 15150-69.
Перечень составных частей сверлильного станка 2А135
плита
стол
шпиндель
коробка подач
шпиндельная головка
электродвигатель
штурвал ручной подачи шпинделя
станина
рукоятка вертикального перемещения стола
Принцип работы сверлильного станка 2А135
Обрабатываемая деталь устанавливается на столе станка и закрепляется в машинных тисках или в специальных приспособлениях. Совмещение оси будущего отверстия с осью шпинделя осуществляется перемещением приспособления с обрабатываемой деталью на столе станка.
Режущий инструмент в зависимости от формы его хвостовика закрепляется в шпинделе станка при помощи патрона или переходных втулок. В соответствии с высотой обрабатываемой детали и длиной режущего инструмента производится установка стола и шпиндельной бабки.
Отверстия могут обрабатываться как ручным перемещением шпинделя, так и механической подачей.
Движения в станке
Движение резания - вращение шпинделя с режущим инструментом
Движение подачи - осевое перемещение шпинделя с режущим инструментом
Вспомогательные движения - ручные перемещения стола и шпиндельной бабки в вертикальном направлении и быстрое ручное перемещение шпинделя вдоль его оси.
Движение резания. Шпиндель V (рис. 55, а) приводится в движение электродвигателем мощностью 4,5 кат через клиноременную передачу 140—178 и коробку скоростей.
На валу I коробки скоростей находится тройной подвижный блок шестерен Б1, обеспечивающий валу II три скорости вращения. От вала II через шестерни 34—48 вращение передается валу III, на котором расположен тройной подвижной блок шестерен Б2, приводящий в движение полый вал IV, связанный шлицевым соединением со шпинделем V. Как видно из графика (рис. 55, б), шпиндель V имеет девять скоростей вращения. Наибольшее число оборотов шпинделя nmax с учетом упругого скольжения ремня определяется из выражения = 1070 об/мин.
Движение подачи. Движение подачи заимствуется от шпинделя V. Движение передается через шестерни 27—50 и 27—50, коробку подач с выдвижными шпонками, предохранительную муфту М1, вал IX, червячную передачу 1—47. зубчатую муфту М2, вал X и реечную передачу гильзе шпинделя.
В коробке подач расположены трех- и четырехступенчатый механизмы с выдвижными шпонками.
От вала VI три скорости вращения сообщаются валу VII, на котором жестко закреплены шестерни 60, 56, 51, 35 и 21. От вала VII четыре скорости вращения передаются валу VIII.
Теоретически коробка подач обеспечивает 12 скоростей вращения, однако, как видно из графика (рис. 54), одна из них повторяющаяся, поэтому станок модели 2А135 имеет только 11 различных величин подач.
От вала VIII через кулачковую муфту M1 движение сообщается валу IX, на котором закреплен червяк. Червячное колесо расположено на одном валу с реечной шестерней 14, находящейся в зацеплении с рейкой, нарезанной на гильзе шпинделя. Муфта М1 служит для предохранения механизма подач от поломок при перегрузках, а также для автоматического выключения подачи при работе по упорам.
Наибольшая величина подачи smax определяется из выражения 3,14*3,5*14 = 1,6 мм/об.
Вспомогательные движения. Перемещение шпиндельной бабки осуществляется от рукоятки P1 через червячную передачу 1—32 и реечную шестерню 18, сцепляющуюся с рейкой m=2 мм, закрепленной на станине.
Вертикальное перемещение стола достигается поворотом рукоятки Р2 через вал XI, конические шестерни 16-43 и ходовой винт XII.
Быстрое перемещение шпинделя с гильзой производится штурвалом Ш, связанным специальным замком с валом X. Замок позволяет штурвалу свободно поворачиваться на валу X в пределах 20°, а в дальнейшем связывает их в одно целое.

Коробка подач модели 2А135
Для изменения величины подачи на станке модели 2А135 используется коробка, состоящая из двух типовых механизмов с выдвижными шпонками. Продольный разрез коробки подач показан на рис. 56,6.
Из кинематической схемы (рис. 55, а) видно, что движение подачи заимствуется от шпинделя. Далее через блок шестерен 1 (рис. 56,6), установленный на оси 2, и зубчатое колесо 3 вращение передается полому валу 4 с прорезью в. На последнем свободно установлены три шестерни 16, имеющие шпоночные пазы б. Между шестернями 16 находятся промежуточные кольца. Внутри полого вала 4 перемещается штанга 14, представляющая в нижней своей части круглую рейку. В верхней части штанги 14 имеется сквозное окно, в котором на оси установлена выдвижная шпонка 15. Эта шпонка под действием пружины 17 стремится пойти в шпоночный паз одной из шестерен 16.
Перемещая штангу 14 с выдвижной шпонкой 15 внутри вала 4, можно соединить последний с любой из шестерен 16. Промежуточные кольца, которые не имеют шпоночных пазов, утапливают выдвижную шпонку в момент переключения скорости. Это необходимо для предупреждения поломки, которая могла бы иметь место в случае заклинивания на валу одновременно двух шестерен.
Аналогичный механизм, состоящий из четырех шестерен 10 с пазами а, выдвижной шпонки 8, пластинчатой пружины 9 и штанги 7, установлен на полом валу 11.
На валу 12 закреплен конус шестерен 13, состоящий из пяти колес. Три верхних колеса конуса находятся в постоянном зацеплении с шестернями 16, а, кроме того, верхнее и три нижних — в постоянном зацеплении с шестернями 10 вала 11. Перемещение штанг 7 и 14 с выдвижными шпонками 8 и 15 для переключения величины подачи шпинделя осуществляется рукоятками, расположенными на левой стороне корпуса шпиндельной бабки.
Плунжерный насос 6 приводится в действие эксцентриком 5.
Механизм подач. Включение и выключение механической подачи, а также подвод и отвод шпинделя рсуществляется штурвальным механизмом подач, изображенным на рис. 56, а. Механизм подач шпинделя вертикально-сверлильного станка модели 2А135 состоит из червячной передачи, реечной передачи, рукояток управления и ряда муфт включения. Привод механизма подач осуществляется от коробки подач через кулачковую муфту 16, предназначенную для автоматического выключения движения подачи по достижении заданной глубины сверления и являющуюся одновременно предохранительным устройством, отключающим цепь движения подачи при перегрузках. Предельная величина нагрузки на механизм подач регулируется винтом 15, который осуществляет предварительное сжатие пружины 14.
Для включения механической подачи штурвал 3 и соединенную с ним кулачковую муфту 22 поворачивают на себя. Угол поворота штурвала и муфты равен 20° и ограничивается прорезью а на муфте и штифтом 21, закрепленным на конце вала I. При повороте штурвала 3 зубья муфты 22, имеющие скосы, сдвигают кулачковую обойму 4 вправо и, входя торцом на торец зубьев обоймы, фиксируют это смещение. К обойме 4 прикреплен двусторонний храповой диск 6, связанный с обоймой 4 подпружиненными собачками 5. При смещении обоймы зубья храпового диска 6 зацепляются с зубьями диска 9, прикрепленного к червячному колесу 7 и связывают последнее с валом I. Таким образом, вращение от коробки подач через муфту 16 сообщается червяку 13, червячному колесу 7 и валу 1, задний конец которого представляет собой реечную шестерню. Последняя находится в зацеплении с рейкой, нарезанной на гильзе 10 шпинделя 11 станка.
Быстрый подвод инструмента к заготовке обеспечивается дальнейшим поворотом штурвала 3 при включенной подаче. В этом случае собачки 5 проскакивают по зубьям внутренней стороны диска 6, опережая механическую подачу.
Выключение механической подачи в любой момент осуществляется поворотом штурвала 3 от себя на 20°, при этом зубья муфты 22 станут напротив впадин обоймы 4, последняя под действием пружины 8 сместится влево, зубья храпового диска 6 расцепятся с зубьями диска 9, вследствие чего червячное колесо 7 будет свободно поворачиваться на валу I и механическая подача шпинделя прекратится.
При быстром подъеме шпинделя механическая подача также автоматически выключается.
Конструкция механизма подачи вертикально-сверлильного станка модели 2А135 допускает также медленное ручное перемещение штурвала 3, гильзы 10 со шпинделем. Для этого необходима выключить штурвалом 3 механическую подачу, после чего переместить кольцо 2 вдоль оси вала I вправо; при этом штифт 20 заблокирует штифт 21 и при повороте штурвала 3 на себя не будет включаться механическая подача.
Настройка механизма подачи для сверления отверстий заданной глубины осуществляется кулачком 18, который устанавливается на требуемый размер по шкале лимба 19.
При настройке станка на нарезание резьб метчиками реверсирование шпинделя для вывода режущего инструмента может быть осуществлено автоматически или вручную. При автоматическом реверсе настройка на глубину нарезания и переключение шпинделя производится кулачком 17, который заранее устанавливается на лимбе 19. При ручном управлении реверсом, когда достигнута требуемая глубина нарезания, изменение направления вращения шпинделя осуществляется рукояткой 12.

Глава 3. Фрезерный - 621МПродольно-фрезерные станки изготовляются различных размеров, начиная с небольших станков (см. рис. 93 и 94), имеющих размеры стола 450X1600 мм, и кончая гигантскими, подобно изображенному на рис. 95. Шпиндельные головки могут иметь горизонтальное и вертикальное расположение и, кроме того, могут быть поворотными, что облегчает обработку наклонных поверхностей деталей. Количество шпиндельных головок зависит от числа обрабатываемых поверхностей. На заводе «Красный пролетарий» для одновременной обработки всех направляющих станины токарного станка применяют продольно-фрезерные станки, имеющие по 9 шпинделей, на которых установлено до 17 фрез. На рис. 96, а показана обработка станины на таком станке, а на рис. 96, б — схема его настройки.
Станки непрерывного действия. В крупносерийном производстве применяют вертикально-фрезерные станки с круглым поворотным столом (рис. 97), позволяющим снимать готовую деталь и закреплять новую заготовку в то время, когда фреза обрабатывает очередную заготовку.
Дальнейшее усовершенствование конструкции станков с поворотным столом привело к созданию карусельно-фрезерного станка. Такие станки строят с диаметром круглого стола 1000мм (мод. 621) и 1500 мм (мод. 623 в двухшпиндельном выполнении и мод. 623В в трехшпиндельном). На рис. 98 изображен двух- шпиндельный карусельно-фрезерный станок выпуска Горьковского завода: один шпиндель несет фрезу для черновой обработки, а другой — для чистовой.
На рис. 99 дано сопоставление трудоемкости обработки чугунной плитки длиной 350 мм и шириной 200 мм на двухшпиндельном карусельно-фрезерном станке и на продольно-фрезерном станке с одним шпинделем.
 
 При закреплении шести плиток на круглом столе карусельно- фрезерного станка (рис. 99, а), принимая средний диаметр фрезерования D равным 900 мм, получаем развернутую длину фрезерования, равную 2800 мм.
При этом установка, зажим и снятие плиток производятся во время обработки.
При закреплении шести плиток на столе продольно-фрезерного станка (рис. 99, б) требуется длина прохода L около 3000 мм,
отдельно на черновую и чистовую обработку. Принимая время на закрепление шести плиток и переключение с черновой на чистовую обработку в 2 мин., рабочую подачу, равную 200 мм/мин, и быстрый обратный ход в 5 м/мин, получаем потребное время на обработку шести плиток в два перехода, равное 33,2 мин.
Таким образом, продольно-фрезерный станок дает почти в три раза меньшую производительность против карусельной обработки и, кроме того, занимает значительно большие площади цеха.
Для одновременной непрерывной обработки заготовок с обоих торцов применяют барабанно-фрезерные станки. На барабанно- фрезерном станке, показанном на рис. 100, заготовки закреплены на круглом, вращающемся вокруг горизонтальной оси, барабане таким образом, что их оба торца могут быть одновременно обработаны поочередно черновыми и чистовыми фрезами. По сравнению с карусельно-фрезерным станком обработка на барабанно-фрезерном станке деталей, имеющих два обрабатываемых торца, будет вдвое производительнее.

В СССР изготовляют барабанно-фрезерные станки с барабаном диаметром 1000 мм (мод. 6021), 650 мм (мод. 6022) и 900 (мод. 6023).
Карусельно-фрезерные и барабанно-фрезерные станки широко применяются для обработки корпусных деталей автомобилей и тракторов при крупносерийном и массовом производстве.
Специальные фрезерные станки. На фрезерных станках возможно достаточно точно обработать все виды поверхностей. Консольно-фрезерные, бесконсольно-фрезерные, продольно-фрезерные станки и станки непрерывного действия являются станками общего назначения и могут применяться для обработки самых разнообразных деталей.
В отличие от станков общего назначения для выполнения определенных фрезерных операций применяют фрезерные станки целевого назначения. К числу таких станков относятся зубофрезерные, резьбофрезерные, шпоночнофрезерные и др.
В связи с развитием крупносерийного и массового производства в настоящее время весьма широко внедряются в производство фрезерные станки, предназначенные для обработки деталей определенной конфигурации. Эти станки сконструированы с учетом наибольшей производительности и часто имеют автоматизированное управление. В отличие от станков целевого назначения их называют специальными. К числу специальных относятся станки, применяемые в часовой промышленности; станки для фрезерования сверл, метчиков, разверток; станки, применяемые в автомобильной, тракторной и станкостроительной промышленности для фрезерования ряда деталей на автоматических и поточных линиях; копировально-фрезерные станки и т. п.

В связи с быстрым развитием техники изделия часто меняют свою конфигурацию, поэтому применение специальных фрезерных станков, не позволяющих, в отличие от станков общего назначения, производить переналадку их на обработку любых деталей, не всегда является выгодным.
В последние годы широкое применение начинают находить так называемые агрегатные фрезерные станки, которые позволяют производить любую комбинацию составляющих их сменных унифицированных узлов (агрегатов) в соответствии с конфигурацией детали и расположением обрабатываемых поверхностей. Для перехода на обработку других деталей достаточно сменить или перекомпоновать отдельные узлы агрегатного станка. На рис. 101 показан агрегатный фрезерный станок для обработки кольцевых заготовок.

Горизонтально-фрезерные станки. На рис. 102 показаны основные узлы горизонтально-фрезерного станка 6Н82Г производства Горьковского завода фрезерных станков. Выпуск этих станков освоен в 1952 г., они часто встречаются в цехах наших заводов. Хорошее знание станка 6Н82Г дает возможность быстро освоить работу на горизонтально-фрезерных станках всех типов, так как их основные узлы мало отличаются от узлов этого станка.
Основание станка отливается из серого чугуна и точно прострагивается с обеих сторон. На одну сторону основания устанавливается и закрепляется болтами станина станка; другая сторона прилегает к полу цеха. В основании имеется корыто для охлаждающей жидкости, которая стекает по трубкам со стола. На основании смонтирован электронасос для подачи охлаждающей жидкости к инструменту.
 
4 Режущий инструмент - резцы с механическим креплением пластинГлавный вид режущего инструмента для обработки заготовок на токарных станках – токарные резцы. Разнообразие обрабатываемых поверхностей обуславливает значительную номенклатуру токарных резцов.
В промышленности применяют резцы с многогранными неперетачиваемыми твердосплавными пластинками. Когда одна из режущих кромок выходит из строя вследствие затупления, открепляют механический прижим пластинки и устанавливают в рабочее положение следующую кромку. Конструктивные варианты некоторых неперетачиваемых твердосплавных пластин приведены на рис. 4.

Рис. 4. Формы твердосплавных механически закрепляемых пластин
Режущие пластины соединяют с головкой резца пайкой, сваркой или механическим способом. В первых двух случаях на головке резца предварительно фрезеруется паз той или иной формы: открытый, полузакрытый, закрытый (рис. 5). Однако твердосплавные пластины при напайке подвергаются действию перепада температур, что вызывает появление микротрещин и выход резцов из строя. Лучшим вариантом закрепления пластин является их механическое крепление.

Рис. 5. Формы пазов под пластину
 а – паз под передним углом;
б – схема переточки с пластиной в закрытом пазу;
в – открытый паз;
г – полузакрытый паз;
д – закрытый паз
На рис. 6 приведены некоторые схемы закрепления твердосплавных пластин с отверстием. Стальной штифт 1 запрессован в державку (рис. 6, а), и на него надевается пластина 3. двусторонний клин 4 при ввинчивании винта 5 прижимает пластину к штифту и. таким образом закрепляет ее. Более удачной, за счет уменьшения числа стыков, является конструкция на рис. 6, б, где поворотом оси 6 с эксцентриком пластина прижимается к базирующему уступу державки 2. Здесь для обеспечения самоторможения должна быть обеспечена высокая точность размерной цепи уступ – ось и эксцентрик – пластина.

Рис. 6. Способы механического закрепления твердосплавных пластин с отверстием
На рис. 6, в показана самотормозящая конструкция, которая позволяет создавать большее усилие зажима. Зажим пластины 3 в конструкции на рис. 6, г осуществляется тягой 7, перемещаемой пружиной 8.
В приведенных конструкциях действующие при резании силы улучшают закрепление пластин. В процессе резания пластина постепенно сминает опорную поверхность гнезда, что приводит, к образованию зазора, возникновению переменных нагрузок и поломок пластины. Поэтому в современных конструкциях опорная поверхность гнезда защищается закаленной стальной или твердосплавной прокладкой 9 (рис. 6, а) такой же конфигурации, что и режущая пластина.
Кроме токарных резцов, на станках токарной группы используют осевой режущий инструмент для обработки отверстий: сверла, зенкеры, развертки, метчики, а также плашки для нарезания наружной резьбы.
Резцы на токарных и токарно-винторезных станках закрепляются в резцедержателе, осевой инструмент – в конической расточке пиноли задней бабки с помощью вспомогательных оправок, патронов и т. д.
На токарно-револьверных станках резцы и осевой инструмент закрепляют в гнездах револьверной головки также с помощью вспомогательной оснастки.
На токарно-карусельных станках используются все упомянутые способы закрепления инструмента.

Заключение

Ведущее место в дальнейшем росте экономики страны принадлежит отраслям машиностроения, которые обеспечивают материальную основу технического прогресса всех отраслей народного хозяйства.
Разработка новых синтетических сверхтвёрдых инструментальных материалов позволило расширить не только диапазон режимов резания, но и спектр обрабатываемых материалов. Повышение точности станков было достигнуто введением в их конструкцию узлов, реализующих новые принципы (например, использование бесконтактных измерительных систем).
В настоящее время развитие станкостроительной отрасли идёт в направлении повышения производительности металлорежущих станков, их надёжности и точности на базе применения автоматизированных процессов, унифицированных станочных модулей, роботизированных технологических комплексов и вычислительной техники.

Список использованной литературы

1. Ачеркан Н.С., Гаврюшин А.А. и др. Металлорежущие станки. 2-хтомник. Машиностроение, 1965г.
2. Кучер А.А., Киватицкий М.М., Покровский А.А. Металлорежущие станки (альбом общих видов, кинематических схем и узлов) - Л.: Машиностроение, 1972. - 308 с.
3. Локтева С.Е. Станки с программным управлением и промышленные роботы. Машиностроение, 1986г.
4. Металлорежущие станки / Колев Н.С., Красниченко Л.В., Никулин Н.С.и др. - М.: Машиностроение, 1980. – 500 с.
5. Металлорежущие станки / Под ред. В.Э.Пуша. - М.: Машиностроение, 1985. - 256 с.
6. Малахов Я.А. Зубообрабатывающие и резьбофрезерные станки и их наладка.
7. Мильштейн М.З. Нарезание зубчатых колес, 1972г.
8. Ничков А.Г. Фрезерные станки.
9. Веренина Л.И., Усов Б.А. Конструкции и наладка токарнозатыловочных станков.
10. Лоскутов В.В., Ничков А.Г. Зубообрабатывающие станки.
11. Иноземцев Г.Г. Проектирование металлорежущих инструментов: Учеб. пособие для втузов по специальности «Технология машиностроения, металлорежущие станки и инструменты» - М.: Машиностроение,1984. - 270 с.
12. Металлорежущие инструменты: Учебник для вузов по специальностям «Технология машиностроения», «Металлорежущие станки и инструменты» /Г.Н.Сахаров, О.Б.Арбузов, Ю.Л.Боровой и др. - М.: Машиностроение, 1989. - 328 с.
13. Нарожных А.Т., Скребнев Г.Г., Токарев В.В. Проектирование фасонных резцов: Учебное пособие / ВолгГТУ, Волгоград, 1999. - 88 с.
14. Руководство по курсовому проектированию металлорежущих инструментов: Учебное пособие для вузов по специальности «Технология машиностроения, металлорежущие станки и нструменты» - М.: Машиностроение, 1986. - 288 с.
15. Семенченко И.И., Матюшин В.М., Сахаров Г.Н. Проектирование металлорежущих инструментов. - М.: Государственное научнотехническое издательство машиностроительной литературы, 1963. - 952 с.
16. Справочник инструментальщика / И.А.Ординарцев, Г.В.Филиппов, А.Н.Шевченко и др. - Л.: Машиностроение, 1987. - 846 с.
17. Справочник технолога-машиностроителя. В 2-х томах. Т.2 / Под ред. А.Н.Малова - М.: Машиностроение, 1972. - 568 с.
18. Токарев В.В., Нарожных А.Т., Скребнев Г.Г. Проектирование зуборезных долбяков: Учебное пособие / ВолгГТУ, Волгоград, 2000. - 77 с.
19.Червячные зуборезные фрезы: Учебное пособие / Токарев В.В., Скребнев Г.Г., Нарожных А.Т. и др. / ВолгГТУ, Волгоград, 1998. - 136 с.

 


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно
    Введите ваш e-mail
    Файл с работой придёт вам на почту после оплаты заказа
    Успешно!
    Работа доступна для скачивания 🤗.