это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
2380369
Ознакомительный фрагмент работы:
Содержание
Введение 3
1. Возникновение, классификация и назначение геодезических сетей 4
1.1 История создания геодезических сетей в России 4
1.2 Классификация и назначение геодезических сетей. 7
2. Методы создания государственных геодезических сетей 10
2.1 Триангуляция и трилатерация 10
2.2 Полигонометрия 15
Заключение 18
Список используемой литературы: 19
Введение
Для обеспечения практически всех видов инженерно - геодезических работ создаются опорные сети. Эти сети служат основой: для производства топографических съёмок при изысканиях; выполнения различных работ на территории городов; выполнения разбивочных работ при строительстве зданий и сооружений; наблюдений за осадками и деформациями оснований сооружений и самих сооружений; при строительстве исполнительной документации.
Геодезические сети используются для решения ряда научных и практических задач, таких как:
- изучения фигуры Земли, её внешнего гравитационного поля, движений полюсов, неравномерности вращения и других геодинамических процессов;
- координатного обеспечения прикладных работ, космического пространства и космических летательных аппаратов;
- картографирования суши, континентального шельфа, морей и океанов;
- обеспечения координатной средой геоинформационных систем.
Развитие (создание) геодезических сетей осуществляется по принципу “от общего к частному”, то есть от классов с наивысшей точностью геодезических измерений к последующим классам. Соответственно этому геодезические сети подразделяются на государственные геодезические сети, сети сгущения и съемочные сети.
Для того чтобы Государственные геодезические сети могли быть полезными для народного хозяйства страны в течение длительного времени, их стараются строить на научной основе, причем с наивысшей точностью, достигаемой в массовых измерениях при использовании новейших методов и высокоточной измерительной техники.
В этом и заключается актуальность выбранной темы данной работы.
В данной работе представлены виды геодезических сетей, их назначение.
Возникновение, классификация и назначение геодезических сетейИстория создания геодезических сетей в РоссииВо всех странах становление и развитие основных геодезических работ было связано с необходимостью картографирования территории государства. Так, в XVI столетии была составлена первая русская карта на Европейскую часть Московского государства, известная под названием "Большой чертеж".
В начале XVIII столетия реформы государственного управления, проводимые Петром I, потребовали новых, более совершенных карт. В 1721 г. была издана первая в России Инструкция по топографо-геодезическим работам.
В то время было принято составлять карты по уездам, которые назывались ландкартами. Геодезической основой каждой ландкарты служил полигон, прокладываемый по границе уезда с помощью астролябии с буссолью и мерной цепи. В каждом уезде или в группе смежных устанавливался свой исходный геодезический пункт, от которого велся отсчет координат в создаваемой сети. Широту исходного пункта определяли из астрономических наблюдений. Долготу этого пункта не определяли. Между исходным пунктом и геодезическим полигоном, построенным вдоль границы уезда, прокладывались буссольные ходы; в местах их пересечения определялись астрономические широты.
Все работы по составлению ландкарт находились в ведении Сената, который передавал готовые ландкарты в Географический департамент Российской академии наук, где они использовались при составлении географических карт и первой генеральной карты России. С 1757 г. работой Географического департамента руководил великий русский ученый М. В. Ломоносов. В целях повышения точности карт тогда было принято решение определять в важнейших пунктах страны не только астрономические широты, но и долготы. К концу XVIII в. на территории России было определено 67 астрономических пунктов. Такого количества астропунктов в те времена не имела ни одна западноевропейская страна.
Таким образом, на рубеже XVIII и XIX столетий главной геодезической основой при составлении карт были только астрономические пункты, причем размещаемые довольно редко на картографируемой территории. Метод триангуляции был известен, но еще не применялся.
После окончания Отечественной войны 1812 г. остро встал вопрос о дальнейшем повышении точности карт. В связи с этим после окончания войны было принято решение создавать опорные геодезические сети для целей картографирования методом триангуляции.
Первые крупные триангуляционные работы в России были начаты в 1816 г. в западных пограничных районах под руководством известного геодезиста К. И. Теннера. В работах К. И. Теннера впервые был реализован основной принцип построения опорных геодезических сетей - принцип последовательного перехода от общего к частному. К. И. Теннер впервые ввел деление триангуляции на классы: 1 класс со сторонами треугольников в среднем около 25 км, 2 класс - 5-10 км и пункты 3 класса, определяемые засечками.
В 1822 г. был учрежден Корпус военных топографов (КВТ), сыгравший большую роль в становлении и развитии основных геодезических и картографических работ в России. За 100 лет своего существования КВТ определил на территории России 3650 пунктов триангуляции 1 класса, 6373 пункта триангуляции 2 и 3 классов.
К началу XX в. был накоплен богатый опыт развития триангуляционных сетей. К этому времени стали выявляться и недостатки в организации этих работ.
К началу текущего столетия основная масса пунктов прежних триангуляции оказалась утраченной, а потребность в геодезической основе, наоборот, заметно возросла. В связи с этим в 1907 г. комиссия начальника КВТ И. И. Померанцева впервые разработала программу построения триангуляции 1 класса на Европейской части России, которая предусматривала:
- проложение рядов триангуляции 1 класса по направлению меридианов и параллелей расстояния между рядами одного направления 300-500 км, периметр полигонов 1200- 1500 км;
- определение на пересечении рядов (в вершинах полигонов) выходных сторон триангуляции, а на обоих концах каждой из них - астрономических широт, долгот и азимутов;
- использование в качестве поверхности относимости эллипсоида Бесселя.
Подчеркивая большую роль и заслуги Корпуса военных топографов перед отечественной геодезией и картографией как главной организации, выполнявшей основные геодезические работы в России, необходимо отметить, что из-за недостаточного внимания царского правительства к вопросам картографирования территории страны и весьма ограниченного финансирования геодезических работ развитие этих работ шло очень медленно. К 1917 г. топографо-геодезическая изученность территории составляла всего лишь около 13 %.
Классификация и назначение геодезических сетей.Совокупность геометрически взаимосвязанных и закреплённых на местности точек (геодезических пунктов), положение которых определено в общей для них системе координат, образует геодезическую сеть.
Геодезические сети — это наиболее надежный, совершенный и практически единственный способ закрепления координатных систем. Измерения на геодезических пунктах могут быть выполнены с наибольшей тщательностью, многократно, повторены в разные эпохи и подвергнуты строгой математической обработке.
По территориальному признаку геодезические сети подразделяются на глобальные (общеземные), национальные (государственные), сети сгущения и местные сети.
Глобальная государственная сеть создается методами космической геодезии по наблюдениям за искусственными спутниками Земли (ИСЗ). Эту сеть используют для решения научных и научно-технических задач высшей геодезии, астрономии, геодинамики (изучение фигуры и внешнего гравитационного поля Земли; уточнение фундаментальных геодезических постоянных; определение движения (прецессии и нутации) полюсов Земли; изучение горизонтальных и вертикальных перемещений литосферных плит земной коры; определение положения референц-эллипсоидов, применяющихся в других странах и др.).
К Государственным геодезическим сетям относятся: Государственная геодезическая сеть (плановая), Государственная нивелирная сеть (высотная), Государственная гравиметрическая сеть.
Государственная геодезическая сеть (ГГС) предусматривает определение взаимного положения геодезических пунктов в плановом отношении на применяемой в стране поверхности относимости (поверхности референц-эллипсоида). Высоты плановой сети определяют со сравнительно небольшой точностью.
Государственная нивелирная сеть служит для определения высот пунктов относительно поверхности квазигеоида. Плановое положение пунктов нивелирной сети на поверхности относимости определяется с невысокой точностью.
Нивелирные сети I и II классов являются главной высотной основой, посредством которой устанавливается единая (Балтийская) система высот по всей территории страны, и используются для решения научных задач: изучения вертикальных движений земной коры, определения уровня воды в морях и океанах т. п. Линии нивелирования I и II классов прокладывают по заранее разработанным направлениям. Не реже чем через каждые 25 лет линии I и частично II классов нивелируют повторно. Во всех случаях линии нивелирования I и II классов прокладывают по трассам с наиболее благоприятными грунтовыми условиями и наименее сложным профилем.
В некоторых случаях используют совмещенные пункты. Тогда их плановые и высотные координаты определяют с соответствующей точностью.
Государственная гравиметрическая сеть используется для определения ускорений силы тяжести в исходных или заданных пунктах. При этом пункты гравиметрической сети на местности не закрепляются, а необходимые наблюдения выполняют непосредственно на пунктах плановой и высотной сетей.
По методам и специфике построения Государственные геодезические сети этих видов строятся раздельно, но они между собой тесно взаимосвязаны, дополняют друг друга, и часто их пункты обобщаются (совмещаются).
Местные геодезические сети предназначены для решения сложных научных и научно-технических задач на локальных участках местности, либо особых объектах, например, в сейсмоактивных районах для наблюдений за сдвижениями земной поверхности и сооружений на ней, при строительстве и эксплуатации гидротехнических сооружений, ускорителей частиц, атомных электростанций, мощных радиотелескопов, телевизионных башен и т.д.
Дальнейшим развитием сетей сгущения являются сети съемочного обоснования, предназначенные для обеспечения топографических съемок заданного масштаба. Съемочные сети создают в виде теодолитных и тахеометрических ходов и их сочетаний, построением треугольников, геодезических четырехугольников, вставок в угол и центральных систем.
Государственная геодезическая плановая и высотная сети делятся соответственно на сети 1, 2, 3 и 4 класса и I, II, III и IV класса. Самым высоким по точности является 1 (I) класс.
В плановой сети классы различаются по точности измерения горизонтальных углов и расстояний, в высотной сети - точностью передачи высоты с пункта на пункт. Сети сгущения подразделяются на аналитические сети 1-го и 2-го разрядов и полигонометрические сети 1-го и 2-го разрядов.
Аналитические сети представляют собой цепочки треугольников, либо сплошные сети триангуляции и трилатерации, а также отдельные точки, получаемые засечками с пунктов государственной сети.
Для сети 2-го разряда могут быть использованы и пункты 1-го разряда. Полигонометрические сети представляют собой одиночные ходы, либо системы ходов, проложенных между пунктами высших разрядов или классов.
При этом могут быть построены одиночные полигонометрические ходы, системы полигонометрических ходов с одной или несколькими узловыми точками, системы ходов в виде полигонов и другие.
Методы создания государственных геодезических сетей2.1 Триангуляция и трилатерацияОсновными методами создания плановых геодезических сетей являются триангуляция, полигонометрия, трилатерация.
Методы триангуляции и трилатерации (рис. 1 а, б) предусматривают построение на местности цепочки или сети треугольников. В триангуляции в каждом из треугольников измеряют все горизонтальные углы, а в конце их цепи, либо в каком-либо определенном месте сплошной сети как минимум две стороны, называемые базисами.
Это позволяет легко вычислить длины других сторон треугольников по известным формулам тригонометрии и геометрии. В трилатерации измеряют все стороны треугольников, а углы в их вершинах определяют по теореме косинусов. Цепочки треугольников трилатерации также включают в себя базисные стороны с известной длиной (базисом) и азимутом (дирекционным углом). На рисунке для ряда трилатерации базисные стороны не указаны.
Рис. 1 Методы построения геодезических сетей
а) - метод триангуляции; б) - метод трилатерации; в) метод полигонометрии.
Иногда, для повышения надежности и обеспечения высокой точности оба указанных метода объединяют, т.е. во всех треугольниках измеряют горизонтальные углы и стороны. Такие сети называют линейно-угловыми. Элементами сети трилатерации также могут служить не только треугольники, но и геодезические четырехугольники, центральные системы.
Метод трилатерации используется, в отличие от метода триангуляции, только при построении сетей 3 и 4 классов, поскольку он уступает ему по точности, а также и в технико-экономическом отношении.
Метод трилатерации может применяться для построения опорных сетей в сочетании с триангуляцией (линейно-угловая триангуляция); при этом в сети измеряют все стороны и углы треугольников.
В настоящие время в связи с широким использованием высокоточной светодальномерной техники метод трилатерации находит всё более широкое применение в практике создания геодезических сетей.
Триангуляция 1 класса строится в виде астрономо-геодезической сети 1 класса, которая совместно со сплошной гравиметрической съемкой призвана обеспечить решение основных научных задач, связанных с определением формы и размеров Земли, а также с изучением вековых движений и деформаций земной коры. В то же время она является главной основой развития геодезических сетей последующих классов и имеет целью распространение единой системы координат на всю территорию России. Построение ее осуществлено с наивысшей точностью, доступной современному приборостроению, и при использовании всех возможностей тщательно продуманной методики измерений.
Сеть 1 класса образует систему полигонов из звеньев триангуляции, каждое из которых не превышает 200 км. Периметр полигона порядка 800-1000 км. Звенья (ряды) триангуляции по возможности располагаются вдоль меридианов и параллелей.
Типовой фигурой, из которой построены звенья триангуляции, является треугольник, близкий к равностороннему. Однако использовались и комбинации треугольников, геодезических четырехугольников и центральных систем. В месте пересечения звеньев (их концах) измерены базисные стороны или расположены базисные сети, построенные для определения длины выходной стороны, заменяющей базисную сторону. В этом случае измерен базис длиною не менее 6 км с точностью порядка 1 : 1 000 000. На обоих концах базисных сторон (выходных сторон) определены пункты Лапласа (астрономические определения широт, долгот и азимутов).
В отдельных районах взамен полигонов, образованных звеньями триангуляции 1 класса, построена сплошная сеть триангуляции 1 класса. Базисные стороны и пункты Лапласа в ней определены примерно через 10 сторон.
Взамен звеньев триангуляции строились вытянутые звенья полигонометрии 1 класса (максимальное удаление отдельных пунктов от замыкающей не превышает 20 км, а направления сторон уклоняются от направления замыкающей не более чем на 20°), состоящие не больше чем из 10 сторон длиною порядка 20-25 км.
Для определения высот базисов и линий полигонометрии над поверхностью эллипсоида, а также с целью изучения фигуры Земли и се гравитационного поля по всем рядам астрономо-геодезической сети проведено астрономо-гравиметрическое нивелирование.
Координаты астрономо-геодезической сети вычисляются в единой "Системе", основой которой является референц-эллипсоид Красовского, а исходным пунктом - координаты Пулковской обсерватории.
Рис.2 Схема построения астрономо-геодезической сети
Триангуляция 2 класса строится в виде сплошных сетей треугольников, заполняющих полигоны триангуляции 1 класса. Она является основной опорной сетью, служащей для развития сетей последующего сгущения и геодезического обоснования всех топографических съемок и изысканий инженерных сооружений. Вместе с тем благодаря своей жесткости и высокой точности сеть 2 класса наряду с сетью 1 класса может быть использована и для целей научного исследования.
Треугольники сети 2 класса должны по возможности приближаться к равносторонним. В зависимости от физико-географических условий длины сторон сети триангуляции 2 класса колеблются в пределах от 7 до 20 км, причем в каждом отдельном случае выбор длин сторон должен быть экономически обоснован.
Сеть 2 класса надежно связана с сетью 1 класса. Типовые схемы привязки триангуляции показаны на (рис. 3). Базисные стороны располагаются не реже чем через 25 треугольников, причем одна базисная сторона должна располагаться примерно в середине полигона 1 класса и на ее концах определены пункты Лапласа.
Рис.3 Схемы привязки триангуляции
Пункт Лапласа - это геодезический пункт, на котором из астрономических наблюдений были определены астрономический азимут и астрономическая долгота. Для астрономических наблюдений используют небесные светила: Солнце и звезды. Пунктов Лапласа на довольно обширную территорию (порядка1 млн км) всего несколько - 10 - 12 пунктов.
Триангуляция 3 и 4 классов является дальнейшим сгущением государственной геодезической сети для целей крупномасштабного картографирования и обоснования строительства инженерных сооружений.
Триангуляция 3 и 4 классов строится в виде вставок жестких систем или отдельных пунктов в сети старших классов с обязательным измерением всех трех углов треугольников (рис. 4).
Рисунок 4. Схемы построения сетей 3 и 4 классов.
Пункты сетей всех классов должны иметь отметки, полученные из геометрического или тригонометрического нивелирования.
На пунктах государственной геодезической сети устанавливается по 2 ориентирных пункта на расстоянии от 500 до 1000 м (в лесу не ближе 250 м). В отдельных случаях в качестве одного из ориентирных пунктов может быть принят хорошо видимый с земли до основания геодезический знак или постоянный местный предмет, такой как башня, мечеть, колокольня и другие.
Геодезическая сеть 2 класса представляет собой сплошную сеть треугольников, либо полигонометрических ходов с узловыми точками, которая полностью заполняет полигоны 1 класса.
Сети 3 и 4 классов могут быть представлены как сплошной сетью треугольников, опирающихся на пункты высших классов, так и могут быть отдельными точками, координаты которых определяются засечками привязкой к пунктам высших классов. При этом для точек 4 класса высшими по классу являются и пункты 3 класса.
Работы по развитию государственных геодезических сетей 1, 2 и 3-го классов выполняются Федеральной службой геодезии и картографии России (Роскартография). Сети 4-го класса развиваются по мере надобности ведомственными организациями, ведущими топографические съемки крупных масштабов, инженерно- геодезические работы.
ПолигонометрияВ лесистой равнинной местности, где развитие сети триангуляции затруднительно либо экономически нецелесообразно из-за сложных местных условий, используют метод полигонометрии.
Для измерения длин сторон полигонометрических ходов применяют свето- и радиодальномеры, инварные проволоки, ленты и другие. Длины сторон могут быть определены также от измеренного базиса через вспомогательную геометрическую фигуру с измеренными углами. Поэтому в зависимости от способа измерения сторон полигонометрию разделяют на:
- траверсную или магистральную (рис. 5, а) - с непосредственным измерением сторон хода;
- параллактическую или базисную, основанную на косвенном определении сторон по короткому базису и острым параллактическим углам (рис. 5, б). При этом непосредственные линейные измерения сводятся к минимуму.
Рисунок 5. Полигонометрия: а) траверсная, б)параллактическаяПолигонометрия по точности построения приравнивается к триангуляции и может заменять соответствующие последней. Как правило, метод полигонометрии целесообразно применять в районах, где триангуляция требует сплошной постройки высоких знаков.
Полигонометрия 1-го класса строится в виде вытянутых по направлениям меридианов и параллелей ходов, образующих звенья первоклассного полигона с периметром 700 - 800 км. На концах звена (в вершинах полигонов) определяют пункты Лапласа. Полигонометрию 2-го класса развивают внутри полигонов триангуляции или полигонометрии 1-го класса в виде сети замкнутых полигонов с периметром 150-180 км.
Полигонометрия 3-го и 4-го классов строится в виде систем ходов с узловыми пунктами или одиночных ходов, опирающихся на пункты государственной геодезической сети высших классов.
При выполнении геодезических работ встречаются случаи, когда значительные по площади участки того или иного района характеризуются либо резко различными формами рельефа (например, один участок— равнина, а соседний является горным), либо резко различным растительным покровом (например, один участок покрывают болота, заросшие травой и мелким кустарником, а на соседнем растет высокий хвойный лес) и т. д.
В таких случаях по технико-экономическим соображениям на одном из участков (там, где это экономически более выгодно), геодезическую сеть (рис. 15) создают методом триангуляции, на другом — полигонометрии, на третьем — методом трилатерации и т. д. Другими словами, на территории района с резко различными условиями создают так называемую комбинированную геодезическую сеть (рис.6).
Рисунок 6. Комбинированная геодезическая сеть: 1) триангуляция; 2)полигонометрия; 3) трилатерацияСхема и методы построения комбинированных геодезических сетей могут быть разными и должны выбираться с учетом конкретных условий тех районов, в которых такие сети будут строить.
Заключение
В заключении стоит отметить , что уже с прошлых веков у людей появилась необходимость делать геодезические работы, связанные с проектированием сетей на местности: была составлена первая русская карта Московского государства, определялись астрономические пункты, постепенно появлялись первые триангуляционные работы, был учрежден Корпус военных топографов (КВТ) и другое.
В данной работе рассмотрены геодезические сети: их виды и назначение, а также методы создания.
Всего разделяют три метода создания ГГС: триангуляция, трилатерация и полигонометрия. Первый метод состоит в создании геодезических сетей из треугольников, в вершинах которых размещены геодезические пункты, с измерением всех углов и некоторых из сторон-базисов. Триангуляция является наиболее распространённым.
Государственная геодезическая сеть служит для выполнения научных и научно-технических задач. Она является главной геодезической основой топографических съемок всех масштабов и должна удовлетворять различным требованиям народного хозяйства и обороны страны.
Список используемой литературы:
Поклад Г.Г. Геодезия: учебное пособие / Г. Г. Поклад, С. П. Гриднёв - Москва: Парадигма, 2011
Киселёв М. И. Геодезия: учебник / М. И. Киселёв, Д. Ш. Михелев - Москва: Изд-во "Академия", 2009
Попов В. Н. Геодезия: учебник для вузов / В. Н. Попов, С. И. Чекалин - Москва : "Горная книга", 2007
Федотов Г. А. Инженерная геодезия: учебник / Г. А. Федотоф - Москва: Изд-во "Высшая школа", 2004
Справочник геодезиста: справочник / под ред. В. Д. Большакова, Г. П. Левчука- 2-е изд., перераб. И доп. - М. : "Недра", 1975
Иванов Г.Б. 140 лет точному нивелированию в России // Геодезия и картография. 2013
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнить 2 контрольные работы по Информационные технологии и сети в нефтегазовой отрасли. М-07765
Контрольная, Информационные технологии
Срок сдачи к 12 дек.
Архитектура и организация конфигурации памяти вычислительной системы
Лабораторная, Архитектура средств вычислительной техники
Срок сдачи к 12 дек.
Организации профилактики травматизма в спортивных секциях в общеобразовательной школе
Курсовая, профилактики травматизма, медицина
Срок сдачи к 5 дек.
краткая характеристика сбербанка анализ тарифов РКО
Отчет по практике, дистанционное банковское обслуживание
Срок сдачи к 5 дек.
Исследование методов получения случайных чисел с заданным законом распределения
Лабораторная, Моделирование, математика
Срок сдачи к 10 дек.
Проектирование заготовок, получаемых литьем в песчано-глинистые формы
Лабораторная, основы технологии машиностроения
Срок сдачи к 14 дек.
Вам необходимо выбрать модель медиастратегии
Другое, Медиапланирование, реклама, маркетинг
Срок сдачи к 7 дек.
Ответить на задания
Решение задач, Цифровизация процессов управления, информатика, программирование
Срок сдачи к 20 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Информационные технологии
Срок сдачи к 11 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Геология
Срок сдачи к 11 дек.
Разработка веб-информационной системы для автоматизации складских операций компании Hoff
Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления
Срок сдачи к 1 мар.
Нужно решить задание по информатике и математическому анализу (скрин...
Решение задач, Информатика
Срок сдачи к 5 дек.
Заполните форму и узнайте цену на индивидуальную работу!