Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Машиностроительные материалы. Металлические, неметаллические и другие новые материалы

Тип Реферат
Предмет Технологические процессы в машиностроении

ID (номер) заказа
2413055

200 руб.

Просмотров
778
Размер файла
41.62 Кб
Поделиться

Ознакомительный фрагмент работы:

СОДЕРЖАНИЕ

ВВЕДЕНИЕ 3
1 МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ 5
2 СПЛАВЫ, ПРИМЕНЯЕМЫЕ ДЛЯ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ С ПОМОЩЬЮ
ЛИТЬЯ 6
3 ОБЩИЕ СВЕДЕНИЯ О НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ 10
4 КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ С НЕМЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ 13
5 РЕЗИНОВЫЕ МАТЕРИАЛЫ 14
6 НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ 15
ЗАКЛЮЧЕНИЕ 16
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 17


ВВЕДЕНИЕ
На сегодняшний день стали являются основным конструкционным материалом для изготовления нагруженных деталей машин, сооружений, элементов подвижного состава.
Сталями называют сплавы железа с углеродом и некоторыми другими химическими элементами.
По химическому составу различают стали углеродистые и легированные.
Если сталь имеет в своем составе только Fe, C и некоторое количество постоянной примеси, то такую сталь называют углеродистой. Если в углеродистую сталь специально введены один или несколько так называемых легирующих элементов (Cr, Ni, W и др.) с целью улучшения ее служебных и технических свойств, то такую сталь называют легированной.
С помощью знаний, которые накопили многочисленные ученые, занимавшиеся тщательным изучением различных металлов, сплавов, их свойств и особенностей, появилась возможность создавать такие материалы, которые отличаются поистине уникальными свойствами. Они сейчас широко используются при производстве современных машин и оборудования, летательных аппаратов, исследующих космическое пространство и т.п.
Следует заметить, что в химически чистом виде металлы в машиностроении практически не применяются, а используются преимущественно их сплавы. Все они подразделяются на черные и цветные. К черным принято относить железо, а также различные его сплавы с углеродом (чаще всего – с добавление некоторых других химических элементов, называющихся в том случае легирующими), а к цветным – алюминий, медь, олово, свинец и их сплавы.
Одной из причин широкого применения в машиностроении сплавов является то, что процесс получения чистых металлов весьма дорогой и трудоемкий. Кроме того, в подавляющем большинстве случаев сплавы обладают гораздо лучшими характеристиками, чем натуральные металлы в чистом виде. Например, прочность стали существенно выше, чем прочность железа, бронзы и латуни – выше, чем меди, а дюралюминия – чем чистого алюминия. Одним из важных свойств сплавов является пластичность, то есть их свойство деформироваться под воздействием внешних сил, при этом не разрушаясь.
В природе насчитывается несколько десятков металлов, из которых современной промышленностью выпускаются десятки тысяч самых разнообразных сплавов. Их ассортимент и номенклатура постоянно растут, причем некоторые сплавы становятся все более и более популярными, а некоторые перестают использоваться в технике совсем.
Для того чтобы составить более-менее определенную картину того, какими же сплавы бывают в принципе, необходимо составить их классификацию. На сегодняшний день единого их подразделения по типам и видам не существует, однако есть градация по некоторым важным признакам. Самая простая и наиболее очевидная из них основывается на содержании главного компонента. Согласно ей все выделяют:
Железо и его сплавы с углеродом (чугуны и стали)
Медь и сплавы на ее основе (латуни и бронзы)
Никели и сплавы на его основе
Алюминий и сплавы на его основе (дуралюмины и силумины)
Магний и сплавы на его основе
Титан и сплавы на его основе
Цинк и сплавы на его основе
Свинец и сплавы на его основе
Олово и сплавы на его основе
В принципе, этот список ни в коей мере не может быть исчерпывающим, поскольку в него вполне можно включить и все другие металлы, которые есть в таблице Менделеева. На практике железо и его сплавы с углеродом принято называть черными металлами, а отрасль промышленности, которая занимается их производством – черной металлургией. Кроме того, к категории черных металлов относят также марганец, хром, причем по той простой причине, что они в весьма значительных количествах используются именно в черной металлургии в качестве легирующих, реагирующих и раскисляющих элементов при выплавке различных марок сталей и чугунов.
Все другие металлы и их сплавы принято причислять к цветным, а та отрасль металлургии, которая их выпускает, именуется цветной металлургией.
Если металлы и их сплавы классифицировать по такому признаку, как назначение, то их можно подразделить на конструкционные и инструментальные. Конструкционные металлы и сплавы предназначены для того, чтобы с их помощью изготавливать различные детали машин, приборов и механизмов, такие как, например: валы, станины, шестерни, пружины, рычаги, шатуны, сердечники, храповики, обмотки электрических машин и трансформаторов и т.п. В практической деятельности конструктивные металлы и сплавы нередко именуются машиностроительными.
Инструментальные сплавы используются для изготовления различных инструментов, таких, как фрезы, резцы, сверла, метчики, плашки, штампы, молотки, а также разнообразные мерительные инструменты (например, скобы и калибры).
Существует и довольно широко применяется также классификация металлов и сплавов на основе такого признака, как технология получения заготовок из них. В этом отношении все материалы делятся на простые и пригодные для прокатки и ковки (деформируемые). Основным свойством последних является пластичность, то есть способность принимать различную форму, не меняя свою структуру, под влиянием различных механических воздействий. К деформируемым металлам и сплавам относится сталь, дуралюмины, латуни и некоторые марки бронзы. Все остальные сплавы относятся к категории литейных, и из них изготавливают различного рода отливки. Основными свойствами этих сплавов являются небольшая линейная и объемная усадка, высокая текучесть. К наиболее типичным и широко используемым в машиностроении литейным сплавам относятся оловянная бронза, силумины и чугуны. Есть целая категория сплавов, которые являются одновременно и литейными, и деформируемыми (некоторые бронзы и латуни, а также отдельные вида сталей).
Любой сплав состоит из так называемых нужных и ненужных составных частей. Нужными являются те из них, без которых сплав просто не будет иметь ценных свойств, и они называются компонентами. Что касается ненужных составных частей, то их принято называть примесями. В процессе производства различных сплавов компоненты вводятся в них совершенно намеренно и целенаправленно, а что касается примесей, то они – ни что иное, как неизбежно попадающие в готовые продукты элементы шихты, футеровки, топлива и т.п.

1 МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ
Возможность практического использования металлов и их сплавов в различных конструкциях на практике определяется их механическими свойствами. К таковым относятся:
деформация
напряжение
прочность материала
предел прочности при растяжении
предел текучести
предел прочности при изгибе
пластичность
удельная вязкость
твердость
износостойкость.
Под деформацией подразумевается способность металлов и сплавов изменять свою форму и размеры в результате воздействия на них различных сил. Различают пластические и упругие деформации, причем первые отличаются от вторых тем, что материал сохраняет измененную форму и после того, как на него перестают воздействовать посторонние силы.
Что касается напряжения, то оно представляет собой соотношение нормальной силы к площади поперечного сечения, и выражается в МПа (кгс/мм2). Под прочностью материала понимается его способность противостоять разрушению и пластическим деформациям, а под пределом прочности на растяжение – та наименьшая величина напряжения, при котором без заметного увеличения нагрузки происходит деформация растягиваемого образца.
Предел текучести составляет обычно около 40-90% предела прочности на разрыв, а предел прочности при изгибе – это максимальное напряжение, которое определяется во время изгиба образца с помощью пресса.
Под пластичностью подразумевается способность материала деформироваться пластически без его разрушения, а под ударной вязкостью – способность без разрушения выдерживать ударные нагрузки. Твердость – это способность материала сопротивляться вдавливанию в его твердого тела, а износостойкость – противостоять разрушению под воздействием трения.

2 СПЛАВЫ, ПРИМЕНЯЕМЫЕ ДЛЯ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ С ПОМОЩЬЮ ЛИТЬЯ
Чугуны. Обозначение серых чугунов включает буквы СЧ и двузначную цифру, соответствующую минимальному значению предела прочности при растяжении для данной марки (табл. 1).
Для получения высших марок серого чугуна применяют модифицирование чугуна силикокальцием, ферросилицием, что измельчает строение графитных включений, уменьшает склонность к хрупкому разрушению, повышает весь комплекс механических свойств.
Серые чугуны по свойствам и применению можно распределить на группы, приведенные ниже.
Ферритные и ферритно-перлитные (СЧ 00, СЧ 12, СЧ 15, СЧ 18, СЧ 20, СЧ 25) имеют пределы прочности при растяжении 120-250 МПа. Их примерный состав: 3,1-3,6% С; 1,8-2,5% 81; 0,6-1,2% Мп; менее 0,3-0,60% Р; менее 0,15% Б (химический состав устанавливают в зависимости от толщины стенок отливки). Эти чугуны применяют для изготовления малоответственных деталей, испытывающих небольшие нагрузки в работе. Например, чугун СЧ 12 используют для строительных колон, фундаментных плит, а чугуны СЧ 15 и СЧ 18 – для литых малонагруженных деталей сельскохозяйственных машин, станков, автомобилей и тракторов, арматур. СЧ 20, СЧ 25 применяют для деталей, работающих при повышенных статических и динамических нагрузках: блоков цилиндров, картеров двигателя, поршней цилиндров, станин различных станков и других отливок.
Таблица 1 - Марки и механические свойства серого чугуна
Марки чугуна Временное сопротивление при растяжении, ов, МПа (кГ/мм2), не менее Твердость, НВ
СЧ 10 100(10) 120-205
СЧ 15 150(15) 130-241
СЧ 20 200 (20) 143-255
СЧ 25 250 (25) 156-260
СЧ 30 300 (30) 163-270
СЧ 35 350 (35) 179-280
СЧ 40 400 (40) 207-285
СЧ 45 450 (45) 229-289
Перлитные чугуны (СЧ 30, СЧ 35, СЧ 40) применяют для отливки станин мощных станков и механизмов, поршней, цилиндров, деталей, работающих на износ в условиях больших давлений (компрессорное, арматурное и турбинное литье, дизельные цилиндры, блоки двигателей, детали металлургического оборудования и т.д.). Структура этих чугунов – мелкопластинчатый перлит (сорбит) с мелкими завихренными графитными включениями. Чугуны этих марок обладают наибольшей герметичностью. По этой причине их широко применяют также для корпусов насосов, компрессоров арматуры гидроприводов.
Чугуны с вермикулярным графитом. В чугунах с вермикулярным графитом структура формируется под действием комплексного модификатора, содержащего магний и редкоземельные металлы. Графит приобретает шаровидную (до 40%) и вермикулярную – в виде мелких тонких прожилок — форму.
После модифицирования эти чугуны содержат: 3,1—3,8% С; 2,0-3,0% Мп; до 0,025 8; 0,08 Р.
Производят четыре марки чугунов с вермикулярным графитом: ЧВГ 30, ЧВГ 35, ЧВГ 40, ЧВГ 45. Число в марке обозначает уменьшенное в 10 раз значение временного сопротивления (МПа).
По механическим свойствам чугуны с вермикулярным графитом занимают промежуточное положение между серыми и высокопрочными чугунами. Они прочнее серых чугунов, особенно при циклических нагрузках. Механические свойства этих чугунов в меньшей степени зависят от массы отливок. Они отличаются хорошей теплопроводностью, что обеспечивает их стойкость к теплосменам.
Чугуны с вермикулярным графитом заменяют серые чугуны в отливках, подвергаемых циклическим нагрузкам и частым теплосменам. Из них отливают блоки цилиндров, поршни, гильзы, крышки цилиндров двигателей внутреннего сгорания, а также изложницы и кокили. При введении в состав чугунов до 1,2% N1 и 0,4% Мо они хорошо противостоят изнашиванию и кавитации.
Латуни. Латунями называются двойные или многокомпонентные сплавы на основе меди, в которых основным легирующим элементом является цинк.
Двойные деформируемые латуни маркируются буквой Л (латунь) и цифрой, показывающей среднее содержание меди в процентах. Латуни с содержанием 90% Си и более называются томпаком (Л96), при 80-85% Си – полутомпаком (Л80). В марках легированных латуней кроме цифры, показывающей содержание меди, даются буквы и цифры, обозначающие название и количество в процентах легирующих элементов. Алюминий в медных сплавах обозначают буквой А, никель – Н, олово – О, свинец – С, фосфор – Ф, железо – Ж, кремний – К, марганец – Мц, бериллий – Б, цинк – Ц. Например, ЛАН59-3-2 содержит 59% Си, 3% А1, 2% N1. В марках литейных латуней указывается содержание цинка, а количество каждого легирующего элемента ставится непосредственно за буквой, обозначающей его название. Например, Л Ц40МцЗА содержит 40% Zn, 3% Мп, 1% А1.
Медь с цинком образует твердый раствор с предельной концентрацией цинка 39%. При большем содержании цинка образуется (3-фаза с кристаллической решеткой объемно-центрированного куба. При температуре 454-468 °С наступает упорядочение (3-фазы, сопровождающееся значительным повышением ее твердости и хрупкости. В отличие от равновесного состояния [З'-фаза появляется в структуре латуней при содержании цинка около 30%. В соответствии с изменением структуры меняются механические свойства латуней. Когда латунь имеет структуру а-твердого раствора, увеличение содержания цинка вызывает повышение ее прочности и пластичности. Появление Р'-фазы сопровождается резким снижением пластичности, прочность продолжает повышаться при увеличении цинка до 45%, пока латунь находится в двухфазном состоянии.
Переход латуни в однофазное состояние со структурой Р'-фазы вызывает резкое снижение прочности. Практическое значение имеют латуни, содержащие до 45% Zn.
Двойные латуни по структуре подразделяют на две группы:
1) однофазные со структурой а-твердого раствора;
2) двухфазные со структурой (а + Р)-фаз.
В связи с высокой пластичностью однофазные латуни хорошо поддаются холодной пластической деформации, которая значительно повышает их прочность и твердость. Рекристаллизационный отжиг проводится при 600—700 °С.
Повышение содержания цинка удешевляет латуни, улучшает их обрабатываемость резанием, способность прирабатываться и противостоять износу. Вместе с тем уменьшаются теплопроводность и электрическая проводимость, которые доставляют 20—50% от характеристик меди. Примеси повышают твердость и снижают пластичность латуней. Особенно неблагоприятно действуют свинец и висмут, которые в однофазных латунях вызывают красноломкость. Поэтому однофазные латуни в основном выпускают в виде холоднокатаных полуфабрикатов: полос, лент, проволоки, листов, из которых изготовляют детали методом глубокой вытяжки (радиаторные трубки, снарядные гильзы, сильфоны, трубопроводы), а также детали, требующие по условиям эксплуатации низкую твердость (шайбы, втулки, уплотнительные кольца и др.).
В двухфазных латунях вследствие а<->(3-превращения легкоплавкие эвтектические фазы находятся не по границам, а внутри зерен твердого раствора и не влияют на их способность к горячей пластической деформации. Иногда добавляют свинец для улучшения обрабатываемости резанием и повышения антифрикционных свойств.
Из-за малой пластичности при низких температурах эти латуни выпускают в виде горячекатаного полуфабриката: листов, прутков, труб, штамповок. Из них изготовляют втулки, гайки, тройники, штуцеры, токопроводящие детали электрооборудования и др.
Вследствие небольшого температурного интервала кристаллизации двойные латуни обладают низкой склонностью к текучести, малой рассеянной усадочной пористостью и хорошей герметичностью.
Но, несмотря на это, они практически не применяются для фасонных отливок, так как имеют довольно большую концентрированную усадочную раковину. Этот недостаток в меньшей степени присущ легированным латуням.
Легированные латуни применяют как для деформируемых полуфабрикатов, так и в виде фасонных отливок.
Литейные латуни, как правило, содержат большее количество цинка и легирующих элементов.
Помимо свинца для легирования латуней используют А1, Ре, N1, 8п, 81.
Эти элементы повышают коррозионную стойкость латуней. Поэтому легированные латуни широко применяют в речном и морском судостроении (конденсаторные и манометрические трубки и другие детали). Оловянные латуни (Л070-1) называют морскими.
Алюминий повышает прочность, твердость латуней. Практическое применение находят высокомедистые латуни с добавлением алюминия до 4% (ЛА77-2), которые благодаря однофазной структуре хорошо обрабатываются давлением. Алюминиевые латуни дополнительно легируют никелем, железом, марганцем, кремнием, обладающими переменной растворимостью в а-твердом растворе, что позволяет упрочнять эти латуни с помощью закалки и старения. Временное сопротивление после такой обработки достигает 700 МПа. Хорошая пластичность в закаленном состоянии позволяет дополнительно упрочнять сплавы с помощью пластической деформации (перед старением). Обработка по схеме «закалка + пластическая деформация + старение» обеспечивает повышение временного сопротивления до 1000 МПа.
Кремний улучшает жидкотекучесть, свариваемость и способность к горячей и холодной пластической деформации латуней. Кремнистые латуни характеризуются высокой прочностью, пластичностью, вязкостью не только при 20-25 °С, но и при низких температурах (до —183°С). При легировании латуни для получения однофазной структуры используют небольшие добавки кремния (ЛК80-3). Эти латуни применяют для изготовления арматуры, деталей приборов, в судо- и общем машиностроении.
Никель повышает растворимость цинка в меди и улучшает механические свойства латуней. Никелевые латуни (например, ЛН65-5) хорошо обрабатываются давлением в холодном и горячем состояниях.
Бронзы. Бронзами называются сплавы меди со всеми элементами, кроме цинка. Название бронзам дают по основным элементам. В бронзах в качестве легирующей добавки может присутствовать цинк. Деформируемые бронзы маркируют буквами Бр (бронза), за которыми следуют буквы, а затем цифры, обозначающие название и содержание в процентах легирующих элементов. Например, БрОЦС4-4-2.5 содержит 4% Бп, 4% Zn, 2,5% РЬ.
Оловянные бронзы. Из диаграммы состояния Си—Бп следует, что предельная растворимость олова в меди соответствует 15,8%. Сплавы этой системы характеризует склонность к неравновесной кристаллизации, в результате чего в реальных условиях охлаждения значительно сужается область а-твердого раствора, его концентрация практически не меняется с понижением температуры, не происходит эвтектоидного превращения 5-фазы, и при содержании олова более 5—8% в структуре сплавов присутствует эвтектоид (5 + а), где 5-фаза — электронное соединение Си31Бп8 со сложной кубической решеткой. Оно обладает высокой твердостью и хрупкостью. Появление 5-фазы в структуре бронз вызывает резкое снижение их вязкости и пластичности. Поэтому, несмотря на повышение прочности при дальнейшем увеличении количества олова до 25%, практическое значение имеют бронзы, содержащие только до 10% Бп.

3 ОБЩИЕ СВЕДЕНИЯ О НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ
К неметаллическим материалам относятся полимерные материалы органические и неорганические: различные виды пластических масс, композиционные материалы на неметаллической основе, каучуки и резины, клеи, герметики, лакокрасочные покрытия, а также графит, стекло, керамика.
Такие их свойства, как достаточная прочность, жесткость и эластичность при малой плотности, светопрозрачность, химическая стойкость, диэлектрические свойства, делают эти материалы часто незаменимыми. Они находят все большее применение в различных отраслях машиностроения.
Основой неметаллических материалов являются полимеры, главным образом синтетические.
Пластические массы
Пластмассами называют искусственные материалы, получаемые на основе органических полимерных связующих веществ.
Обязательным компонентом пластмассы является связующее вещество. В качестве связующих для большинства пластмасс используют синтетические смолы, реже применяют эфиры целлюлозы.
Другим важным компонентом пластмасс является наполнитель (порошкообразные, волокнистые и другие вещества). Наполнители повышают механические свойства, снижают усадку при прессовании и придают материалу те или иные специфические свойства.
Свойства пластмасс зависят от состава отдельных компонентов, их сочетания и количественного отношения, что позволяет изменять характеристики пластиков в достаточно широких пределах.
Термопластичные пластмассы
В основе термопластичных пластмасс лежат полимеры линейной или разветвленной структуры, иногда в состав полимеров вводят пластификаторы.
Неполярные термопластичные пластмассы. К ним относятся полиэтилен, полипропилен, полистирол и фторопласт-4.
Полиэтилен - продукт полимеризации бесцветного газа этилена, относящийся к кристаллизующимся полимерам.
Чем выше плотность и кристалличность полиэтилена, тем выше прочность и теплостойкость материала. Он химически стоек и при нормальной температуре нерастворим ни в одном из известных растворителей. Недостаток его подверженность старению.
При меняют для изготовления труб, пленок, литых и прессованных несиловых деталей.
Полипропилен является производной этилена. Это жесткий нетоксичный материал с высокими физико-механическими свойствами. Нестабильный полипропилен подвержен быстрому старению. Недостаток полипропилена его невысокая морозостойкость (от -10 до -200С.
Полистирол - твердый, жесткий, прозрачный, аморфный полимер. Удобен для механической обработки, хорошо окрашивается, растворим в бензине. Недостаток его невысокая теплостойкость, склонность к старению и образованию трещин.
Из полистирола изготавливают детали для радиотехники, телевидения и приборов, сосуды для воды и многое другое.
Фторопласт-4 является аморфно-кристаллическим полимером. Разрушение материала происходит при температуре выше 415С. Он стоек к воздействию растворителей, кислот, щелочей и растворителей, не смачивается водой. Недостатки хладотекучесть.
Применяют для изготовления труб, вентилей, кранов, насосов, мембран, уплотнительных прокладок, манжет и др.
Полярные термопластичные пластмассы.
Фторопласт-3 - полимер трифторхлортилена. Его используют как низкочастотный диэлектрик, кроме того из него изготавливают трубы, шланги, клапаны, насосы, защитные покрытия металлов и др.
Органическое стекло - это прозрачный аморфный термопласт на основе сложный эфиров акриловой и метакриловой кислот. Материал более чем в 2 раза легче минеральных стекол, отличается высокой атмосферостойкостью, оптически прозрачен. Недостатки невысокая поверхностная твердость.
Применяют для изготовления штампов, литейных моделей и абразивного инструмента.
Поливинилхлорид является аморфным полимером. Пластмассы имеют хорошие электроизоляционные характеристики, стойки к химикатам, не поддерживают горение, атмосферостойки., имеют высокую прочность и упругость.
Изготавливают трубы, детали вентиляционных установок, теплообменников, строительные облицовочные плитки.
Полиамиды - это группа пластмасс с известными названиями капрон, нейлон, анид и др. Они продолжительное время могут работать на истирание, ударопрочны, способны поглощать вибрацию. Стойки к щелочам, бензину, спирту, устойчивы в тропических условиях.
Из них изготавливают шестерни, подшипники, болты, гайки, шкивы и др.
Полиуретаны в зависимости от исходных веществ, применяемых при получении, могут обладать различными свойствами, быть твердыми, эластичными и даже термореактивными.
Полиэтилентерефталат - сложный полиэфир, в России выпускается под названием лавсан, за рубежом - майлар, терилен. Из лавсана изготавливают шестерни, кронштейны, канаты, ремни, ткани, пленки и др.
Термостойкие пластики.
Ароматический полиамид - фенилон. Из фенилона изготавливают подшипники, зубчатые колеса, детали электрорадиопередатчиков.
Полибензимидазолы являются ароматическими гетероциклическими полимерами. Обладают высокой термостойкостью, хорошими прочностными показателями. Применяют в виде пленок, волокон, тканей специальных костюмов.
Термореактивные пластмассы
Пластмассы с порошковыми наполнителями (волокниты, асбоволокниты, стеловолокниты). Волокниты представляют собой композиции из волокнистого наполнителя в виде очесов хлопка, пропитанного фенолоформальдегидными связующими. Применяют для изготовления деталей, работающих на изгиб и кручение. Асбоволокниты содержат наполнителем асбест, связующее фенолоформальдегидная смола. Из него получают кислотоупорные аппараты, ванны и трубы.
Слоистые пластмассы (гетинакс, текстолит, древеснослоистые пластики, асботесолит) являются силовыми конструкционными с поделочными материалами. Листовые наполнители придают пластику анизотропность. Материалы выпускают в виде листов, плит, труб, заготовок, из которых механической обработкой получают различные детали.
Газонаполненные пластмассы
Представляют собой гетерогенные дисперсные системы, состоящие из твердой и газообразной фаз.
Пенопласты – материалы с ячеистой структурой, в которых газообразные наполнители изолированы друг от друга и от окружающей среды тонкими слоями полимерного связующего. Обладают хорошей плавучестью и высокими теплоизоляционными свойствами.
Применяют для теплоизоляционных кабин, контейнеров, приборов, холодильников, рефрижераторов, труб и т.п. Мягкие и эластичные пенопласты применяют для амортизаторов, мягких сиденей, губок.
Сотопласты изготавливают из тонких листовых материалов. Для них характерны достаточно высокие теплоизоляционные, электроизоляционные свойства и радиопрозрачность.
Применяют в виде заполнителей многослойных панелей в авиа- и судостроении для несущих конструкций.

4 КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ С НЕМЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ
Карбоволокниты представляют собой композиции, состоящие из полимерного связующего (матрицы) и упрочнителей в виде углеродных волокон (карбоволокон). Они сохраняют прочность при очень высоких температурах, а также при низких температурах.
Эпоксифенольные карбоволокниты КМУ-1л, упрочненный углеродной лентой, и КМУ-1у на жгуте могут длительно работать при температуре до 200С.
Карбоволокниты отличаются высоким статическим и динамическим сопротивлением усталости, водо- и химически стойкие.
КМУ-1л - плотность 1.4т/м3, удельная жесткость 8.6*103км, ударная вязкость 50кДж/м2.
Они представляют собой композиции полимерного связующего и упрочнителя - борных волокон. Отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, теплопроводностью и электропроводимостью.
Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 2000С.
Изделия из бороволокнита применяют в авиационной технике.
КМБ-1к - плотность 2.0т/м3, удельная жесткость 10.7*103км, ударная вязкость 78кДж/м2.
Органоволокниты. Представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей в виде синтетических волокон. Они устойчивы в агрессивных средах и во влажном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая.
Органоволокниты применяют в качестве изоляционного и конструкционного материала в электрорадиопромышленности, авиационной технике, автостроении; из них изготовляют трубы, емкости.

5 РЕЗИНОВЫЕ МАТЕРИАЛЫ
Резиной называется продукт специальной обработки (вулканизации) каучука и серы с различными добавками.
Резина отличается от других материалов высокими эластическими свойствами, которые присущи каучуку - главному исходному материалу резины. Для резиновых материалов характерна высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.
К группе резин общего назначения относятся вулканизаторы неполярных каучуков - НК, СКБ, СКС, СКИ.
НК - натуральный каучук. Для получения резины НК вулканизируют серой. Резины на основе НК отличаются высокой эластичностью, прочностью, водо- и газонепроницаемостью, высокими электроизоляционными свойствами.
НК - плотность каучука 910-920кг/м3, предел прочности 24-34 МПа, относительное удлинение 600-800%, рабочая температура 80-1300С.
СКБ - синтетический каучук бутадиеновый. Каучуки вулканизируют аналогично натуральному каучуку.
СКБ - плотность каучука 900-920 кг/м3, предел прочности 13-16 МПа, относительное удлинение 500-600%, рабочая температура 80-1500С.
СКС - бутадиенстирольный каучук (СКС-10, СКС-30, СКС-50) - это самый распространенный каучук общего назначения.
СКС - плотность каучука 919-920кг/м3, предел прочности 19-32 МПа, относительное удлинение 500-800%, рабочая температура 80-1300С.
СКИ - синтетический каучук изопреновый. Из этих резин изготавливают шины, ремни, рукава, различные резинотехнические изделия.
СКИ - плотность каучука 910-920 кг/м3, предел прочности 31.5 МПа, относительное удлинение 600-800%, рабочая температура 1300С.
Маслобензостойкие резины получают на основе каучуков хлоропренового, СКН и тиокола.
Наирит, резины на его основе обладают высокой эластичностью, вибростойкостью, износостойкостью, устойчивы к действию топлива и масел.
Наитрит - плотность каучука 1225кг/м3, предел прочности 20-26.5МПа, относительное удлинение 450-550%, рабочая температура 100-1300С.
СКН -бутадиеновый каучук (СКН-18, СКН-26, СКН-40). Резины на его основе применяют для изготовления ремней, конвейерных лент, рукавов, маслобензостойких резиновых изделий.
СКН - плотность каучука 943-986кг/м3, предел прочности 22-33МПа, относительное удлинение 450-700%, рабочая температура 100-1770С.
Теплостойкие резины получают на основе каучука СКТ.
СКТ - синтетический каучук теплостйкий. В растворителях и маслах он набухает, имеет низкую механическую стойкость, высокую газопроницаемость, плохо сопротивляется истиранию.
СКТ - плотность каучука 1700-2000кг/м3, предел прочности 35-80МПа, относительное удлинение 360%, рабочая температура 250-3250С.
Морозостойкими являются резины на основе каучуков, имеющих низкие температуры стеклования.
Существует еще ряд различных видов резин специального назначения.

6 НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ
Графит является одной из аллотропических разновидностей углерода. Это полимерный материал кристаллического пластинчатого строения.
Графит не плавится при атмосферном давлении. Графит встречается в природе, а также получается искусственным путем.
Пиролитический графит получается из газообразного сырья. Его наносят в виде покрытия на различные материалы с целью защиты их от воздействия высоких температур.
Пирографит - объемная масса 1950-2200кг/м3, пористость 1.5%, модуль упругости 112/70ГПа.
Неорганическое стекло следует рассматривать как особого вида затвердевший раствор - сложный расплав высокой вязкости кислотных и основных оксидов.
Механические свойства стекла характеризуются высоким сопротивлением сжатию (500-2000МПа), низким пределом прочности при растяжении (30-90МПа) и изгибе (50-150МПа). Более высокие механические характеристики имеют стекла бесщелочного состава и кварцевые.
Керамика неорганический материал, получаемый отформованных масс в процессе высокотемпературного обжига.
Керамика на основе чистых оксидов. Оксидная керамика обладает высокой прочностью при сжатии по сравнению с прочностью при растяжении или изгибе; более прочными являются мелкокристаллические структуры. С повышением температуры прочность керамики понижается. Керамика из чистых оксидов, как правило, не подвержена процессу окисления.
Бескислородная керамика. Материалы обладают высокой хрупкостью. Сопротивление окислению при высоких температурах карбидов и боридов составляет 900-10000С, несколько ниже оно у нитридов. Силициды могут выдерживать температуру 1300-17000С (на поверхности образуется пленка кремнезема).

ЗАКЛЮЧЕНИЕ
Основную группу конструкционных материалов представляют металлические материалы – металлы и сплавы. Их относят к неорганическим веществам. Металлы и сплавы подразделяют на черные и цветные. Черные металлы – это железо и сплавы на его основе: стали и чугуны; цветные металлы – это алюминий, титан, медь, магний, никель, олово, свинец и сплавы на их основе. К цветным относят также тугоплавкие сплавы – на основе хрома, ванадия, молибдена, ниобия, тантала и вольфрама.
Неметаллические материалы могут быть как неорганическими, так и органическими. К органическим относят пластмассы на основе углеродных полимеров, резины, органическое стекло. Неорганические материалы – это техническая керамика, стекла, интерметаллические соединения типа металл – металл. Техническая керамика включает соединения различных элементов с кислородом (оксиды), углеродом (карбиды), азотом (нитриды), а также графит.
Композиционные материалы (композиты) сочетают в себе свойства нескольких материалов. Композиты получают в результате искусственного объединения двух или более разнородных компонентов с четкой границей между ними. Композиционные материалы могут состоять как из одинаковых по химической природе материалов (металл – металл, неметалл – неметалл), так и из сочетания металлических и неметаллических материалов.
По назначению конструкционные материалы классифицируют в соответствии с условиями работы деталей, выполненных из этих материалов. В машиностроении эти условия отличаются значительным разнообразием. Такие детали, как поршни двигателей, карданные валы, клапана двигателей, пружины, подшипники качения и скольжения, подвергаются при эксплуатации воздействию различных внешних факторов – механическим нагрузкам, температуре, влиянию внешней среды.
В зависимости от условий работы изделий их материал должен отвечать определенным требованиям к свойствам: статической и циклической прочности, пластичности, жаропрочности, хладостойкости, износостойкости, коррозионной стойкости, жаростойкости и другим свойствам.
Виды механической нагрузки влияют на выбор материалов с различным уровнем характеристик:
• статической прочности (пониженной, средней, высокой);
• циклической прочности (выносливости);
• циклической контактной прочности;
• износостойкости;
• ударной вязкости.
При одновременном воздействии механической нагрузки и повышенной температуры используют жаропрочные материалы. С учетом температуры эксплуатации применяют материалы
• хладостойкие (климатические температуры);
• криогенные (температуры сжиженных газов);
• жаростойкие (повышенные температуры).
При агрессивном воздействии внешней среды используют коррозионно-стойкие материалы.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1.Анурьев В.И. Справочник конструктора-машиностроителя: В 3-х т. Т. 1. М.: Машиностроение, 1982 - 736 с.
2. Ачеркан Н.С. Справочник металлиста: В 3-х т. Т. 2. М.: Машиностроение, 1965 - 678 с.
3. Журавлев В.Н., Николаев О.И. Машиностроительные стали: Справочник, М.: Машиностроение, 1992 - 480 с.
4. Лахтин Ю.М., Леонтьева В.П. Материаловедение, М.: Машиностроение, 1990. – 528 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно
    Введите ваш e-mail
    Файл с работой придёт вам на почту после оплаты заказа
    Успешно!
    Работа доступна для скачивания 🤗.