это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
2419515
Ознакомительный фрагмент работы:
Содержание
Введение 3
1 Цели и методы гидродинамических исследований пластов и скважин 6
2 Методы ГДИС 11
3 Метод Хорнера 17
Заключение 22
Список использованной литературы 24
Введение
Кривые восстановления (падения) забойных давлений (КВД-КПД) являются одним из известных и распространенных методов гидродинамических исследовании скважин на неустановившихся режимах фильтрации.
Под гидродинамическими исследованиями скважин (ГДИС) понимается система мероприятий, проводимых на скважинах по специальным программам: замер с помощью глубинных приборов ряда величин (изменения забойных давлений, дебитов, температур во времени и др., относящихся к продуктивным нефтегазовым пластам), последующая обработка замеряемых данных, анализ и интерпретация полученной информации о продуктивных характеристиках - параметрах пластов и скважин и т д.
За последние годы были разработаны дистанционные высокоточные глубинные электронные манометры с пьезокварцевыми датчиками давления и глубинные комплексы с соответствующим компьютерным обеспечением (так называемые электронные манометры второго поколения) Применение таких манометров и комплексов позволяет использовать при анализе новые процедуры, резко улучшающие качество интерпретации фактических данных и количественно определяемых параметров продуктивных пластов. Особо остро стоят эти вопросы при разработке сложно построенных месторождений, при бурении, эксплуатации и исследовании горизонтальных скважин.
В общем комплексе проблем разработки месторождений углеводородов важное место занимает начальная и текущая информация о параметрах пласта - сведения о продуктивных пластах, их строении и коллекторных свойствах, насыщающих флюидах, геолого-промысловых условиях, добывных возможностях скважин и др. Объем такой информации о параметрах пласта весьма обширен.
Источниками сведений о параметрах пласта служаткак прямые, так и косвенные методы, основанные на интерпретации результатов исследований скважин геолого-геофизических исследований, лабораторных изучений образцов породы (кернов, шлама) и проб пластовых флюидов при различных термобарических условиях (исследования РVТ, изучаемой физикой пласта), данных бурения скважин и специального моделирования процессов фильтрации ГДИС.
Обработка и интерпретация результатов ГДИС связана с решением прямых и обратных задач подземной гидромеханики. Учитывая, что обратные задачи подземной гидромеханики не всегда имеют единственные решения, существенно отметить комплексный характер интерпретации данных ГДИС с широким использованием геолого-геофизических данных и результатов лабораторных исследований РVT.
Гидродинамические исследования скважин направлены на решение следующих задач:
измерение дебитов (приемистости) скважин и определение природы флюидов и их физических свойств;
измерение и регистрация во времени забойных и пластовых давлений, температур, скоростей потоков и плотности флюидов с помощью глубинных приборов (датчиков) и комплексов;
определение (оценка) МПФС и параметров пластов - гидропроводности в призабойной и удаленных зонах пласта, скин-фактора, коэффициентов продуктивности (фильтрационных сопротивлений) скважин; пространственного распределения коллекторов, типа пласта коллектора (его деформационных свойств), положения экранов, сбросов и границ (зон пласта), взаимодействия скважин; распределения давления в пласте, типов фильтрационных потоков и законов фильтрации в пласте и других параметров - по результатам обработки и интерпретации данных измерений и регистрации давлений и дебитов различными типами и видами ГДИС,
оценка полученных результатов, т.е. проверка на адекватной МПФС, и исходных замеренных данных.
1 Цели и методы гидродинамических исследований пластов и скважин
Все существующие промысловые ГД методы исследования скважин можно подразделить на три большие группы.
К первой группе относятся методы исследования скважин при установившемся режиме их эксплуатации.
Вторая группа включает в себя методы исследования при неустановившемся режиме работы скважин, известные в нефтепромысловой практике под общим названием исследования скважин по кривым восстановления давления (уровня).
Третья группа включает методы исследования пластов повзаимодействию скважин (гидропрослушивание)] при однократном возмущении. В тех случаях, когда возмущение в скважине создается многократно и гармонически, этот метод получил название метода фильтрационных гармонических волн давления.
В результате проведения гидродинамических исследований тем или иным методом определяются фильтрационные параметры пласта и скважины, а именно:
гидропроводностькомплексный параметр
коэффициент продуктивности
Коэффициент продуктивности показывает, какое количество жидкости В сутки добывается из скважины при снижении на ее забое давления на 1 ат. При проведении комбинированных исследований и применении специальных методик обработки результатов исследований можно определить скин-эффект.
Для подсчета запасов нефти и газа, составления проектов разработки объектов, установления технологических режимов работы скважин и пластов и решения вопросов оперативного регулирования необходим следующий комплекс сведений.
Горногеометрическая характеристика пласта и залежи: глубина залегания, площадь распространения, положение непроницаемых границ и включений и их протяженность, начальное положение контуров нефтеносности, степень и характер расчленения пласта по разрезу, эффективная мощность пласта h и характер ее изменения но площади и т. д.
2.Гидродинамические и коллекторские свойства пласта: пористость m, проницаемость k, пьезопроводность c, гидропроводность E, продуктивность К, нефтенасыщенность sн и газонасыщенность sг, начальное и текущее давления и т. п.
3. Физико-химические характеристики пластовых жидкостей и газов: вязкость m, плотность r, давление насыщения и другие, л также зависимости их от давления, температуры и газонасыщенностиПроцессы фильтрации жидкостей и газов в реальных пластах из-за значительной изменчивости их гидродинамических свойств чрезвычайно сложны. Поэтому для изучения и управления процессами добычи необходима информация не только о начальном состоянии залежи, но и о закономерностях изменения указанных параметров при разработке месторождения.
Основной целью различных методов исследования скважин и пластов является получение наиболее полной и достоверной информации о свойствах пласта, пластовых жидкостей и закономерностях процессов из фильтрации в реальных пластах. Информацию, необходимую для осуществления наиболее рациональных систем разработки осуществления наиболее рациональных систем разработки нефтяных и газовых месторождений, получают с помощью различных методов исследования, условно подразделяющихся на следующие основные группы: 1) геологические; 2) геофизические; 3) гидродинамические и 4) лабораторные.
В общем комплексе способов исследования скважин и пластов особое значение имеют гидродинамические методы - основа всей системы контроля за процессами разработки нефтегазовых месторождений.
Особое значение приобретают эти методы на стадии промышленной эксплуатации залежи, так как на основании данных гидродинамических исследований можно оценить распределение текущей нефтенасыщенности, определить профили притоков, продвижение контуров нефтеносности, распределение давлений и т. д. Гидродинамические методы исследования скважин позволяют также оценить эффективность мероприятий по интенсификации добычи нефти.
Таким образом, современные гидродинамические методы исследования дают возможность получать по промысловым данным важнейшие параметры пласта, на основании которых проектируются системы разработки месторождений, регулируется процесс добычи нефти и анализируется эффективность разработки объектов.
Непосредственно с помощью гидродинамических методов определяется следующий комплекс параметров [14]: 1) коэффициент продуктивности К (для эксплуатационных скважин) или коэффициент поглощения К (для нагнетательных скважин); 2) гидропроводности, пласта Е = kh/m; З) пьезопроводность пласта c; 4) комплекс параметров c/г2 ( r0 - приведенный радиус скважины).
Численные значения комплекса параметров, характеризующих гидродинамические свойства пласта и скважин, определяются расчетным путем при решении так называемых обратных задач подземной гидродинамики указанный комплекс параметров учитывается непосредственно расчетными формулами, используемыми при решении многих задач, связанных с проектированием и разработкой месторождений, в том числе с задачами по установлению дебитов отдельных скважин, определению пластовых давлений и т. д.
Для определения других параметров, характеризующих гидродинамические свойства скважины и пласта (проницаемость k, приведенный радиус скважины r0 и коэффициент гидродинамического несовершенства h), необходимо иметь дополнительно данные о геологофизических свойствах пластов (мощность пласта h, пористость m, вязкость жидкости и газа в пластовых условиях mж и mг и др.), определяемые с помощью геофизических и лабораторных методов исследования.
Целью гидродинамических исследований на стадии промышленной разведки месторождений является получение возможно полной информации о строении и свойствах пластов, необходимой для подсчета запасов и составления проекта разработки. На этой стадии по всем нефтяным скважинам, вскрывающим объекты, подготавливаемые к промышленной разработке, определяются начальные пластовые давления и температуры, коэффициенты, продуктивности, гидропроводности и пьезопроводности пласта. По результатам исследования глубинных проб нефти определяются величины давления насыщения, вязкость, плотность, газовый фактор, объемный коэффициент и другие физико-химические характеристики пластовых жидкостей.
Одной из главных задач гидродинамических исследований на стадии промышленной разведки является выявление общей картины неоднородностей пласта по площади.
На стадиях пробной эксплуатации и промышленной разработки месторождения задачами гидродинамических исследований являются:
уточнение данных о гидродинамических свойствах разрабатываемого объекта, необходимых для дальнейшего проектирования;
получение информации о динамике процесса разработки, необходимой для его регулирования; 3) определение технологической эффективности мероприятий, направленных на интенсификацию добычи нефти (обработка призабойных зон скважин, гидроразрыв и т. д.).
В этот период на промыслах составляются планы и графики проведения исследований по всему фонду скважин, в которых предусматривается необходимый перечень исследований и их периодичность. По данным исследований определяется общая картина динамики выработки объекта, для чего строятся карты изобар для начальных и текущих пластовых давлений; продвижения водо- и газонефтяных контуров по кровле и подошве пласта; равных коэффициентов продуктивности, проницаемости и пьезопроводности. Кроме того, строятся кривые изменения во времени дебита нефти, воды и газа по пласту, а также расхода жидкости, закачиваемой в пласт.
2 Методы ГДИС
Различают ГДИС на установившихся режимах фильтрации — метод снятия индикаторной диаграммы (ИД) и на неустановившихся режимах — методы кривой восстановления давления (КВД), кривой падения давления (КПД), кривой восстановления уровня (КВУ) или кривой притока (КП).
Испытание пласта — это технологический комплекс работ в скважине, связанный со спускоподъёмными операциями инструмента, созданием глубокой депрессии на пласт, многоцикловым вызовом притока пластовой жидкости и отбором глубинных проб с регистрацией диаграмм изменения давления и температуры на забое и в трубах автономными манометрами.
Каждый цикл состоит из открытого периода с регистрацией кривой притока (КП) и закрытого периода с регистрацией кривой восстановления давления (КВД). Продолжительность периодов выбирают, исходя из решаемой задачи. Так для определения начального пластового давления используют КВД после кратковременного притока (первый цикл), для отбора представительной пробы пластового флюида и оценки фактической продуктивности требуется большая продолжительность притока, а также длительная КВД для определения гидропроводности удалённой зоны пласта, потенциальной продуктивности и HYPERLINK "https://ru.wikipedia.org/wiki/%D0%A1%D0%BA%D0%B8%D0%BD-%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80" \o "Скин-фактор" скин-фактора (второй цикл).
ИПТ применяют для испытаний пластов в открытом стволе в процессе бурения, а также в обсаженных и перфорированных скважинах, когда использование стандартных технологий КВД и ИД малоинформативно:
в низко- и среднедебитных эксплуатационных скважинах,
при наличии перфорации двух стратиграфически различных пластов,
при работе скважины в режиме неустойчивого фонтанирования.
Преимущества ИПТ заключаются в возможности создания малого подпакерного объёма, что позволяет снизить влияние упругой реакции ствола скважины и, тем самым, получить необходимые условия фильтрации в пласте при существенно меньшей продолжительности исследований.
Тем не менее, время нахождения инструмента на забое скважины ограничено технологическими причинами (несколько часов). Поэтому радиус исследования пласта при ИПТ невелик и полученные параметры пласта лишь приблизительно характеризуют добывные возможности скважины в условиях длительной эксплуатации.
Метод кривой восстановления давления (КВД) применяется для скважин, фонтанирующих с высокими и устойчивыми дебитами.
Исследование методом КВД заключается в регистрации давления в остановленной скважине (отбор жидкости прекращён), которая была закрыта путём герметизации устья после кратковременной работы с известным дебитом (тест Хорнера) или после установившегося отбора (метод касательной).
Для определения параметров удалённой от скважины зоны пласта длительность регистрации КВД должна быть достаточной для исключения влияния « HYPERLINK "https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%BF%D1%80%D0%B8%D1%82%D0%BE%D0%BA" \o "Послеприток" послепритока» (продолжающегося притока жидкости в ствол скважины), после чего увеличение давления происходит только за счёт сжатия жидкости в пласте и её фильтрации из удалённой в ближнюю зону пласта (конечный участок КВД).
Продолжительность исследования эксплуатационной скважины методом КВД может составлять от нескольких десятков часов до нескольких недель, благодаря чему радиус исследования охватывает значительную зону пласта. Тем не менее, при большой длительности исследования конечные участки КВД могут быть искажены влиянием соседних скважин на распределение давления в удалённой зоне пласта.
Метод кривой восстановления уровней (КВУ) применяется для скважин с низкими пластовыми давлениями (с низкими статическими уровнями), то есть нефонтанирующих (без перелива на устье скважины) или неустойчиво фонтанирующих.
Вызов притока в таких скважинах осуществляется путём снижения уровня жидкости в стволе скважины методом компрессирования или свабирования.
КВУ проводится в остановленной скважине (отбор жидкости прекращён) которая была закрыта путём герметизации устья. Из пласта продолжается затухающий со временем приток, сопровождающийся подъёмом уровня жидкости в стволе скважины. Производится регистрация глубины динамического уровня жидкости (ГЖР — газожидкостного раздела) и ВНР (водонефтяного раздела) с течением времени. Подъём уровня и рост столба жидкости сопровождается увеличением давления. Кривую изменения давления в этом случае называют кривой притока (КП). После полного прекращения притока и восстановления давления выполняют замер статического уровня и пластового давления.
Длительность регистрации КВУ или КП зависит от продуктивности скважины, плотности флюида, площади сечения поднимающегося в стволе скважины потока жидкости и угла наклона ствола скважины.
Обработка КВУ позволяет рассчитать пластовое давление, дебит жидкости и коэффициент продуктивности, а в случае регистрации глубины ВНР — обводнённость продукции. При совместной регистрации глубины уровня жидкости и давления глубинным манометром можно получить оценку средней плотности жидкости.
Попытки обработать КВУ по нестационарным моделям «с учётом притока» с целью получения гидропроводности удалённой зоны пласта и HYPERLINK "https://ru.wikipedia.org/wiki/%D0%A1%D0%BA%D0%B8%D0%BD-%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80" \o "Скин-фактор" скин-фактора, как правило, малоинформативны из-за очень большой упругоёмности ствола скважины с открытым устьем или газовой шапкой. В такой ситуации влияние «послепритока» существенно на всём протяжении КВУ, а методики «учёта притока» часто не дают однозначной интерпретации КП. Для исключения влияния «послепритока» применяют изоляцию интервала испытания пакерами от остального ствола скважины с использованием ИПТ (см. выше).
Метод снятия индикаторной диаграммы (ИД) применяется с целью определения оптимального способа эксплуатации скважины, изучения влияния режима работы скважины на величину дебита. Индикаторные диаграммы строятся по данным установившихся отборов и представляют собой зависимость дебита от депрессии или забойного давления.
Метод установившихся отборов применим для скважин с высокими устойчивыми дебитами и предусматривает проведение замеров на 4-5 установившихся режимах. Отработка скважины, как правило, проводится на штуцерах с различными диаметрами. При каждом режиме измеряют забойное давление, дебиты жидкой и газообразной фаз пластового флюида, обводнённости и др.
Основными определяемыми параметрами являются фильтрационно-ёмкостные свойства призабойной зоны. Для более полной оценки фильтрационных характеристик пласта необходимо комплексирование с методом КВД в остановленной скважине (см. выше).
Гидропрослушивание осуществляется с целью изучения параметров пласта (пьезопроводность, гидропроводность), линий выклинивания, тектонических нарушений и т. п. Сущность метода заключается в наблюдении за изменением уровня или давления в реагирующих скважинах, обусловленным изменением отбора жидкости в соседних возмущающих скважинах. Фиксируя начало прекращения или изменения отбора жидкости в возмущающей скважине и начало изменения давления в реагирующей скважине, по времени пробега волны давления от одной скважины до другой можно судить о свойствах пласта в межскважинном пространстве.
Для получения полной информации необходимы систематическое исследование и контроль за процессом добычи на всех стадиях разработки месторождения: от разведки до промышленной эксплуатации включительно. Как известно, на стадии разведки из-за небольшого числа разведочных скважин невозможно учесть все детали строения продуктивного пласта и изменения его гидродинамических свойств. При проектировании принимаются осредненные параметры, характеризующие свойства пластов и пластовых жидкостей. Поэтому в проектах разработки не учитывается вся совокупность геологических и физико-химических факторов, влияющих на процесс разработки месторождения.
При освоении залежи объем информации возрастает, что позволяет составить более полную картину неоднородности пласта и внести необходимые коррективы в проект разработки. Чтобы выбранная система разработки полнее соответствовала выявляющейся картине неоднородности, в процессе эксплуатации месторождения необходимо осуществлять ее регулирование либо принять меры к изменению принятой системы, ибо только тогда обеспечиваются наиболее высокие технико-экономические показатели разработки залежи.
Эффективность мероприятий по регулированию процесса добычи также зависит от детального знания свойств пластов и о ходе процессов их разработки. Эти сведения могут быть получены с помощью исследований и контроля за добычей нефти.
В общем случае система контроля процесса добычи нефти должна обеспечить получение данных, достаточных для установления текущих значений следующих факторов: 1) распределения запасов нефти и газа по площади и разрезу залежи; 2) распределения давления по площади каждого пласта и в отдельных случаях - в прилегающей к залежи законтурной области пласта; 3) распределения притоков и поглощений нефти, воды и газа по разрезу; 4) распределения коэффициентов продуктивности и приемистости по интервалам
Если при гидропрослушивании в скважине не отмечается реагирование на изменение отбора в соседней скважине, то это указывает на отсутствие гидродинамической связи между скважинами вследствие наличия непроницаемого экрана (тектонического нарушения, выклинивания пласта). Таким образом, гидропрослушивание позволяет выявить особенности строения пласта, которые не всегда представляется возможным установить в процессе разведки и геологического изучения месторождения.
3 Метод Хорнера
Параметры пласта следует определять по тому же участку преобразованной в полулогарифмических координатах КВД, что и методом MDH (касательная).
Если период работы скважины до ее остановки на исследование T соизмерим с периодом наблюдения t после остановки, обрабатывать такие кривые восстановления давления следует методом Хорнера по формуле
(11),
где Т – время (сек) работы скважины до остановки на исследование с дебитом Q (см3/сек)..Перестраивая кривую восстановления давления в координатах [p2(t) – log(T+t/t)], по асимптоте определяют параметр гидропроводности kh/.
Метод Хорнера не позволяет определить параметр приведенной пьезопрводности /r2cпр, но дает возможность определить пластовое давление pпл.
pпл = √B(12)
где tg - угол наклона преобразованной кривой восстановления давления к оси абсцисс; «В» - отрезок, отсекаемый на оси ординат.
5. Оценка состояния призабойной зоны скважины – определение скин - эффекта
Величину скин-эффекта определяют по формуле (13) где rс - радиус совершенной скважины по долоту, см; rс.пр. - приведенный радиус скважины, определяется по известному значению приведенной пьезопроводности, определенной выше после обработки кривых восстановления давления - формулам (4) или (5)
(14) - пьезопроводность пласта, определяется по формуле:
(15) где: k/ - подвижность флюида, определяется по известному значению гидропроводности kh/, д/спз; m - пористость пласта; Pпл – замеренное пластовое давление в конце исследования, атЕсли величина χ/rcпр2 определена по формуле (5) не учитывающей турбулентность потока вблизи скважины введением коэффициента «b» из индикаторной диаграммы, то получаем величину псевдоскина, т.е. интегральную величину скин-эффекта, учитывающую несовершенство скважины по степени и характеру вскрытия, а также - нарушение линейной фильтрации газа.
6. Определение фактического коэффициента продуктивности скважины по формуле:
(16) В формуле (16) величина гидропроводности kh/ определена из обработки кривой восстановления давления методом MDH (формула 3).
Фильтрационное сопротивление фактическое определено по формуле (10), величина скин-эффекта – по формуле (13), радиус скважины равен rc = 11 см.
Вычисление фактического дебита скважины для определения достоверности полученных параметров производят по формуле:
, (м3/сут)(17)
В формулы (16), (17) входит интегральное значение скин-эффекта, т.е. – псевдоскин.
Радиус дренирования Rдр (радиус контура Rk) за время исследования скважины вычисляют по формуле:
Rдр = √2,25χT, (18)
где χ – величина пьезопроводности определена выше (формула 15),
T – продолжительность КВД, сек,
р = рсо2 – рс(t)2 – определено в конце исследования.
7. Потенциальный дебит скважины может быть вычислен по формуле (17) при условии снижения скин-эффекта (псевдоскина) до «0».
Можно задавать разные значения скина от 0 до 2,3, и т.д.
Величине радиуса дренирования Rдр также можно задавать разные значения от полученного при обработке КВД (формула 18) до радиуса контура питания, равного половине расстояния между скважинами Rk.
Рассматривая опыт контроля разработки прошлых лет и сопоставляя его с сегодняшним положением дел, можно отметить ряд характерных черт. Во второй половине ХХ века, когда многие методы исследования действующих скважин: промыслово-геофизические (ПГИ), промыслово-технологические (ТИ) и гидродинамические (ГДИС) только внедрялись в производство, в практике отечественных инженеров уже одно 13 только успешное их применение было важным достижением. Среди ПГИ преобладали такие стандартные на сегодняшний день методы как механическая и термокондуктивная расходометрия, термометрия, барометрия, влагометрия, локатор муфт и метод сопротивлений. Основой технологии проведения исследований являлись непрерывные измерения перечисленных параметров по глубине.
За прошедшие десятилетия были предприняты значительные усилия для повышения результативности исследований. Одним из основных направлений этих усилий явилось повышение точности и надежности существующих датчиков. В первую очередь это относится к датчикам, регистрирующих температуру и давление, основные параметры которых (чувствительность, разрешающую способность) удалось поднять на несколько порядков. Такие объекты исследования как горизонтальные стволы и пласты с многофазным притоком дали новый толчок к развитию ПГИ. Традиционные методы практически не работают в условиях сложной структуры потока. Логичной эволюцией методов стало создание приборов с распределенными датчиками по сечению скважины.
Также появились новые приборы, реализация которых была невозможна ранее из-за технологических ограничений. Пример таких технологически развитых приборов – Flow Scanner Schlumberger, представляет из-за себя комплексный прибор, сочетающий в себе многодатчиковый расходомер, оптические датчики и электроразрядые датчики. Можно встретить на практике другие сочетания многодатчикового расходомера, с радиоактивными методами (нейтронная активация кислорода) или методами закачки маркеров.
И наконец, нельзя не упомянуть о появлении принципиально новых измерительных систем, которые основаны на новых походах. При этом большинство реализуемых в настоящее время идей были известны уже давно, но до сих пор не находили широкого применения по самым различным причинам.
В ряде случаев тормозом внедрения было слабое методическое обеспечение, иногда отсутствие необходимого аппаратурного и программного обеспечения. Одним из таких ярких примеров является шумометрия скважин, которая в современном спектральном варианте переживает сейчас «второе рождение». К числу принципиально новых идей, реализованных сравнительно недавно относится спектральная шумометрия сигналов электромагнитной эмиссии. Аналогичный путь прошли гидродинамические исследования скважин. Среди основных технологий ГДИС следует в первую очередь назвать следующие: пуск скважины и запись кривой стабилизации давления (КСД), остановка скважины и запись кривой восстановления давления или уровня (КВД или КВУ).
В последнее время все шире 14 используются также сложные технологии, предусматривающие циклическую смену различных состояний (режимов работы) скважины. Эти технологии являются естественным результатом развития широко распространенной до сих пор технологией получения индикаторной диаграммы (ИД) [11]. Казалось бы, основные методы ГДИС с момента их создания до недавних пор не претерпели существенных изменений. Но существенное улучшение метрологических характеристик измерительной аппаратуры, а также технологий проведения исследований (внедрение новых способов вызова притока, реализация долговременных КВД с закрытием на забое и пр.) кардинально повысило результативность исследований скважин.
Заключение
Интерпретация ГДИС позволяет оценить продуктивные и фильтрационные характеристики пластов и скважин (пластовое давление, продуктивность или фильтрационные коэффициенты, обводнённость, газовый фактор, гидропроводность, проницаемость, пьезопроводность, HYPERLINK "https://ru.wikipedia.org/wiki/%D0%A1%D0%BA%D0%B8%D0%BD-%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80" \o "Скин-фактор" скин-фактор и т. д.), а также особенности околоскважинной и удалённой зон пласта. Эти исследования являются прямым методом определения фильтрационных свойств горных пород в условиях залегания ( HYPERLINK "https://ru.wikipedia.org/wiki/In_situ" \o "In situ" in situ), характера насыщения пласта (газ/нефть/вода) и физических свойств пластовых флюидов (плотность, вязкость, объёмный коэффициент, сжимаемость, давление насыщения и т. д.).
Комплекс проблем, обусловленный взаимодействием скважин и изменением параметров пласта, делает контроль разработки залогом эффективной эксплуатации недр. Недостаточная эффективность организации мониторинга, ошибки организации системы ППД и добычи непосредственно влияют на объем невыработанной нефти и итоговый КИН. Поэтому задачи построения качественной и экономически обоснованной системы мониторинга разработки месторождения, включая техническую и методическую реализацию, обретают все большую важность.
Ключом к контролю и оперативному управлению разработкой являются глубинные стационарные измерительные системы, передающие данные в режиме реального времени. Внедрение систем стационарного мониторинга становится совершившимся фактом. Многие из них прошли успешную апробацию и находятся на пути к производственному внедрению. Многие (в первую очередь телеметрические системы ЭЦН) широко внедрены в производство и стали неотъемлемой частью системы контроля разработки.
Анализ ГДИС основан на установлении взаимосвязей между дебитами скважин и определяющими их перепадами давления в пласте. Основы современной теории гидродинамических исследований скважин были заложены в трудах таких выдающихся ученых, как Лейбензон Л. С., Щелкачев В. Н., Маскет М., Чарный И. А. и др.
Список использованной литературы
1. Абрукин A.Л. Потокометрия скважин. - М.: Недра, 1978. – 253с.
2. Азиз Х., Сеттари Э. Математическое моделирование пластовых систем. Пер. с англ. - М.: Недра, 1982. – 408с. 3. Бадалов Г.И. Контроль разработки нефтяных месторождений геофизическими методами. – М.: МИНГ, 1991. - стр. 64.
4. Барышников А.В., Габдрашидов Э.Ф., Никурова Л.Ф., Кременецкий М.И., Кокурина В.В., Гуляев Д.Н. Формирование системы промыслового мониторинга на основе долговременных исследований стационарными датчиками на приеме насоса // Нефтяное хозяйство. - 2009. - №12. - стр. 41-44.
5. Барышников А.В., Сидоренко В.В., Кокурина В.В., Кременецкий М.И., Мельников С.И., Ридель А.А. Решение проблемы интерпретации результатов гидродинамических исследований низкопроницаемых коллекторов с гидроразрывом на основе анализа снижения дебита скважин // Нефтяное хозяйство. – 2010. – №12.
6. Басин Я.Н., Грунис Е.В. Геофизические исследования скважин на этапе эксплуатации месторождений нефти и газа // НТВ АИС Каротажник. - 1996. - №25. - стр. 11-15.
7. Басин Я.Н., Степанов А.Г. Высокочувствительная термометрия в комплексе с ядерногеофизическими методами для контроля за нефтяными месторождениями Западной Сибири // Новые методы и аппаратура ядерной геофизики. - 1970. – 116с.
8. Басниев К. С, Кочина И.Н., Максимов В.М. Подземная гидромеханика. - М.: Недра, 1993. – 416с.
9. Блажевич В.А., Фахреев И.А., Глазков А.А. Исследование притока и поглощения жидкости по мощности пласта. - М.: Недра, 1969. – 134с.
10. Белоус В.Б, Мажар В.А., Гуляев Д.Н., Ипатов А.И., Кременецкий М.И. Новая технология мониторинга нефтяных скважин, эксплуатирующих совместно несколько пластов \\ Нефтяное хозяйство. – 2006. - №12. – стр. 62-67
11. Бузинов С.Н., Умрихин И.Д. Гидродинамические методы исследования скважин и пластов. - М.:Недра, 1973. - 246с.
12. Валлиулин Р.А., Рамазанов А.Ш. Термические исследования при компрессорном освоении нефтяных скважин. - Уфа: Издательство Башкирского государственного унта, 1992. - 168с.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнить 2 контрольные работы по Информационные технологии и сети в нефтегазовой отрасли. М-07765
Контрольная, Информационные технологии
Срок сдачи к 12 дек.
Архитектура и организация конфигурации памяти вычислительной системы
Лабораторная, Архитектура средств вычислительной техники
Срок сдачи к 12 дек.
Организации профилактики травматизма в спортивных секциях в общеобразовательной школе
Курсовая, профилактики травматизма, медицина
Срок сдачи к 5 дек.
краткая характеристика сбербанка анализ тарифов РКО
Отчет по практике, дистанционное банковское обслуживание
Срок сдачи к 5 дек.
Исследование методов получения случайных чисел с заданным законом распределения
Лабораторная, Моделирование, математика
Срок сдачи к 10 дек.
Проектирование заготовок, получаемых литьем в песчано-глинистые формы
Лабораторная, основы технологии машиностроения
Срок сдачи к 14 дек.
Вам необходимо выбрать модель медиастратегии
Другое, Медиапланирование, реклама, маркетинг
Срок сдачи к 7 дек.
Ответить на задания
Решение задач, Цифровизация процессов управления, информатика, программирование
Срок сдачи к 20 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Информационные технологии
Срок сдачи к 11 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Геология
Срок сдачи к 11 дек.
Разработка веб-информационной системы для автоматизации складских операций компании Hoff
Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления
Срок сдачи к 1 мар.
Нужно решить задание по информатике и математическому анализу (скрин...
Решение задач, Информатика
Срок сдачи к 5 дек.
Заполните форму и узнайте цену на индивидуальную работу!