Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Многомерное шкалирование и его основные методы

Тип Реферат
Предмет Анализ данных и инструментальные методы статистики, статистика

ID (номер) заказа
2475342

200 руб.

Просмотров
868
Размер файла
241.24 Кб
Поделиться

Ознакомительный фрагмент работы:

Введение
Многомерное шкалирование начало свое интенсивное развитие в 60-х годах в работах американских ученых Торгерсона, Шепарда, Краскэла. Круг советских специалистов, занимающихся этой проблемой, достаточно узок, и основные их усилия направлены на разработку формализованных методов и вычислительных процедур, реализующих известные модели на ЭВМ. К настоящему времени методы многомерного шкалирования, к сожалению, не получили широкого применения в психометрических исследованиях в нашей стране. Видимо, причинами тому являются малочисленность группы специалистов и отсутствие хороших пакетов программ.
Развитие многомерного шкалирования идет в направлении все большей его формализации. При этом остаются в тени некоторые содержательные вопросы, обсуждение которых могло бы привлечь внимание большого количества пользователей и способствовало бы расширению области применения этих методов. Не уделяется достаточно внимания изучению свойств моделей многомерного шкалирования. Отсутствуют публикации (в доступных американских источниках в том числе), в которых бы анализировался сам механизм шкалирования и рассматривался вопрос о том, каким образом методы многомерного шкалирования позволяют выделить факторы, принимаемые во внимание человеком при сравнении стимулов. Эти вопросы связаны самым непосредственным образом с проблемой содержательной интерпретации формально построенного решения.
Глава 1. Многомерное шкалирование. Определение многомерного шкалирования. Многомерное шкалирование — метод анализа и визуализации данных с помощью расположения точек, соответствующих изучаемым (шкалируемым) объектам, в пространстве меньшей размерности чем пространство признаков объектов. Точки размещаются так, чтобы попарные расстояния между ними в новом пространстве как можно меньше отличались от эмпирически измеренных расстояний в пространстве признаков изучаемых объектов. Если элементы матрицы расстояний получены по интервальным шкалам, метод многомерного шкалирования называется метрическим. Когда шкалы являются порядковыми, метод многомерного шкалирования называется неметрическим. Мера различий расстояний в исходном и новом пространстве называется функцией стресса.
Многомерное шкалирование отличается от других многомерных методов в первую очередь видом используемых данных. Оно применимо к данным, для которых непригодно большинство обычных методов факторизации. Основной тип данных в многомерном шкалировании представляет собой меру близости или различия между двумя объектами. В целом предпосылки использования многомерного шкалирования отличаются от предпосылок факторного анализа, поэтому многомерное шкалирование обычно позволяет получить результаты, отличные от результатов, получаемых с помощью методов факторного анализа.
Многомерное шкалирование применяется в психологии в тех ситуациях, когда по каким-либо причинам невозможно непосредственно измерять интересующие психолога переменные. Данные, которые обрабатываются с помощью многомерного шкалирования, могут быть собраны по-разному. Чаще всего испытуемым дают задачу оценить попарные сходства (или, наоборот, различия) между исследуемыми объектами.
Методы многомерного шкалирования позволяют на основе полученных таким образом матриц восстановить пространство минимальной размерности, в котором исследуемые объекты будут размещены на определенном расстоянии друг от друга. Процедура многомерного шкалирования такова, что она дает возможность «перевести» субъективное различие между стимулами в геометрическое расстояние между ними. Критерием качества изображения является показатель, называемый «стрессом». Он измеряет степень расхождения между исходными различиями и результирующими расстояниями. Ищется такая конфигурация точек, при которой «стресс» будет наименьшим. Собственно, значения координат этих точек и будут искомым решением (Терехина, 1983).
Методом многомерного шкалирования можно обрабатывать данные экспертных оценок сходства или различия между объектами. Популярен этот метод и в психосемантических исследованиях обыденного сознания, а также в исследованиях особенностей субъективного восприятия.
В общем можно сказать, что многомерное шкалирование позволяет анализировать структуру субъективных данных. Благодаря процедурам многомерного шкалирования определяются факторы, на основе которых производится оценка сходств и различий между объектами.
Назначение многомерного шкалированияОсновная цель многомерного шкалирования (МШ) - выявление структуры исследуемого множества объектов - близка к цели факторного и кластерного анализа. Так же, как в факторном анализе, под структурой понимается набор основных факторов (в данном случае - шкал), по которым различаются и могут быть описаны эти объекты. Однако в отличие от факторного, но подобно кластерному анализу, исходной информацией для МШ являются данные о различии или близости объектов.
В психологии чаще всего исходными данными для МШ являются субъективные суждения испытуемых о различии или сходстве стимулов (объектов). Центральное положение МШ заключается в том, что в основе таких суждений лежит ограниченное число субъективных признаков (критериев), определяющих различение стимулов, и человек, вынося свои суждения, явно или неявно учитывает эти критерии. Основываясь на этом положении, решается главная задача МШ - реконструкция психологического пространства, заданного небольшим числом измерений-шкал, и расположение в нем точек-стимулов таким образом, чтобы расстояния между ними наилучшим образом соответствовали исходным субъективным различиям. Таким образом, шкала в МШ интерпретируется как критерий, лежащий в основе различий стимулов.
Геометрические представления МШ основаны на аналогии между понятием различия в психологии и понятием расстояния в пространстве. Чем более субъективно сходны между собой два объекта, тем ближе в реконструируемом пространстве признаков должны находиться соответствующие этим объектам точки. Исходя из такой дистанционной модели, по субъективным данным о различии одного объекта от другого реконструируется их взаимное расположение в пространстве нескольких признаков. Эти признаки трактуются как субъективные шкалы — критерии, которыми пользуется человек при различении объектов. А расстояние между объектами в этом пространстве есть определенная функция от исходных оценок различия.
Общая схема МШ формально может быть представлена следующим образом. На основе суждений экспертов (испытуемых) в отношении интересующих исследователя объектов вначале составляется симметричная матрица попарных различий (или матрицы - по одной для каждого эксперта). Допускается и использование данных о предпочтениях, содержащих упорядочивание каждым экспертом совокупности объектов по степени их предпочтения. Сравниваемыми объектами могут быть члены коллектива, предметы домашнего обихода, литературные отрывки, цветовые оттенки и т. д. Модель МШ предполагает, что эксперт производит сравнение, осознанно или нет пользуясь одним или несколькими признаками этих объектов. В отношении сотрудников подразделения такими признаками могут быть должностной статус, профессионализм, доброжелательность и т. д.
В процессе МШ определяется, сколько признаков-шкал необходимо и достаточно для построения координатного пространства и размещения в нем точек-объектов. Если ij – это оценка экспертом различия между объектами, а число признаков, которыми пользуется эксперт при сравнении, - К, то задача многомерного шкалирования сводится к определению всех xik и xjk как координат этих объектов в пространстве К признаков. При этом предполагается, что число критериев, которыми пользуется эксперт, значительно меньше числа сравниваемых объектов. Например, i и j – сотрудники, а признак К – доброжелательность, то xik и xjk – доброжелательность этих сотрудников. Величины значений признаков xik и xjk непосредственно не даны, но оцениваются в результате МШ в виде матрицы:

где Р – количество сравниваемых объектов,
К – количество шкал.
Элементы xij указанной матрицы рассматриваются как координаты P объектов в пространстве K признаков. Пространство определено так, что чем больше исходное различие между объектами, тем дальше друг от друга расположены объекты в этом пространстве. Каждая шкала результирующего пространства получает интерпретацию через объекты, находящиеся на противоположных полюсах шкалы.
Следует отметить, что исходными данными для МШ могут являться не только субъективные оценки различий, но и обычные данные типа «объект- признак». Но поскольку МШ предназначено для анализа различий, то для данных типа «объект-признак» необходимо, во-первых, определить, что будет подлежать шкалированию - сами объекты (строки) или признаки (столбцы). Во- вторых, необходимо задать метрику различий - то, как будут определяться различия между всеми парами изучаемых элементов.
Выбирая МШ, исследователь должен отдавать себе отчет в том, что это довольно сложный метод, применение которого к тому же связано с неизбежными потерями исходной информации о различии объектов. Поэтому, если задача исследования ограничивается классификацией объектов и нет оснований полагать, что эта классификация обусловлена небольшим числом независимых причин - критериев различий, то целесообразнее воспользоваться более простым методом - кластерным анализом.
Рассмотрим исходные данные и основные результаты применения МШ на простом примере. Попытаемся, исходя из субъективных оценок расстояний между совокупностью объектов, реконструировать конфигурацию их взаимного расположения. Допустим, субъекту предъявляется 10 объектов, расположенных на плоскости в некоторой произвольной конфигурации, и дана инструкция оценить расстояние между каждым объектом и всеми остальными, присвоив 1 наименьшему расстоянию, 2 - следующему по величине и т. д. Примерно одинаковым расстояниям разрешим присваивать одинаковые числовые значения. В результате выполнения такого задания наблюдатель заполнил нижний треугольник матрицы попарных различий между объектами, в данном случае - расстояний (табл. 1.2.1). Оказывается, МШ справляется с подобными задачами. Применение программы неметрического МШ (программа SPSS) дает 2- шкальное решение (табл. 1.2.1).
Таблица 1.2.1. Субъективные оценки расстояний между 10 объектами.

В связи с тем, что типичными исходными данными для МШ в психологии являются все же непосредственные оценки различий, изложение этой главы сопровождается примерами анализа исходной информации именно этого типа. Тем не менее, подчеркнем, что для МШ допустимо применение и любых других исходных данных.
Глава 2. Методы многомерного шкалирования2.1. Задача многомерного шкалирования и пути её решения
Задача многомерного шкалирования в самом общем виде состоит в том, чтобы выявить структуру исследуемого множества стимулов. Под выявлением структуры понимается выделение набора основных факторов, по которым различаются стимулы, и описание каждого из стимулов в терминах этих факторов. Процедура построения структуры опирается на анализ объективной или субъективной информации о близостях между стимулами либо информации о предпочтениях на множестве стимулов. В случае анализа субъективных данных решаются одновременно две задачи. С одной стороны, выявляется объективная структура субъективных данных, с другой — определяются факторы, влияющие на процесс принятия решения.
Методы многомерного шкалирования могут использовать разные типы данных: данные о предпочтениях субъекта на множестве стимулов, данные о доминировании, о близостях между стимулами, данные о профилях и т. п. Как правило, с каждым типом данных принято соотносить определенную группу методов их обработки. Однако такое соотнесение не должно быть слишком жестким, поскольку часто не представляет особого труда перейти от одного типа данных к другому. Так, например, данные о профилях можно легко преобразовать в данные о близостях, для этого необходимо только воспользоваться подходящей метрикой. Данные о предпочтениях содержат в себе информацию о доминировании. С другой стороны, подсчитав корреляции между столбцами матрицы предпочтений, получим матрицу близостей между стимулами, а корреляции между строками той же матрицы дадут нам матрицу близостей между субъектами. В настоящей работе будет обсуждаться только анализ близостей.
В основе многомерного шкалирования лежит идея геометрического представления стимульного множества. Предположим, что нам задано координатное пространство, каждая ось которого соответствует одному из искомых факторов. Каждый стимул представляется точкой в этом пространстве, величины проекций этих точек на оси соответствуют значениям или степеням факторов, характеризующих данный стимул. Чем больше величина проекций, тем большим значением фактора обладает стимул. Мера сходства между двумя стимулами обратна расстоянию между соответствующими им точками. Чем ближе стимулы друг к другу, тем выше мера сходства между ними (и ниже мера различия), далеким точкам соответствует низкая мера сходства. Чтобы точным образом измерить близости, необходимо ввести метрику в искомом координатном пространстве; выбор этой метрики оказывает большое влияние на результат решения.
Обычно используется метрика Минковского:

где r — размерность пространства, djk — расстояние между точками, соответствующими j-му и k-му стимулам, Xjt, Xkt — величины проекций j-й и k-й точек на t-ю ось. Наиболее распространенными ее случаями являются: евклидова метрика (р=2):

и метрика «city-block» (р=1):

В некоторых случаях пользуются метрикой доминирования (р стремится к бесконечности):

Использование равномерных метрик предполагает, что при оценке сходств (различий) субъект в одинаковой мере учитывает все факторы. Когда же имеется основание утверждать, что факторы неравноценны для индивида и он учитывает их в разной степени, прибегают к взвешенной метрике, где каждому фактору приписывается определенный вес. Разные индивиды могут принимать во внимание разные факторы. Тогда каждый индивид характеризуется своим собственным набором весов Wti. Взвешенная метрика Минковского имеет вид:

Такая модель называется «индивидуальным шкалированием» или «моделью взвешенных факторов». Геометрически она интерпретируется следующим образом. Пусть в координатном пространстве имеется конфигурация точек, отражающая восприятие некоторого «среднего индивида» в группе. Для того чтобы получить пространство восприятия i-го субъекта, необходимо растянуть «среднюю конфигурацию» в направлении тех осей, для которых Wti > Wtср, и сжать в направлении осей, для которых Wti < Wtср. Например, если в пространстве двух факторов для «среднего индивида» все стимулы лежат на окружности, то для индивида, характеризующегося весами W1i=2, W2i=1, эти стимулы будут располагаться на эллипсе, вытянутом вдоль горизонтальной оси, а для индивида, характеризующегося весами W2i=2, W1i=1, на эллипсе, вытянутом вдоль вертикальной оси.
Схема многомерного шкалирования включает ряд последовательных этапов. На первом этапе необходимо получить экспериментальным способом субъективные оценки различий. Процедура опроса и вид оценок должны выбираться исследователем в зависимости от конкретной ситуации. В результате такого опроса должна быть сконструирована субъективная матрица попарных различий между стимулами, которая будет служить входной информацией для следующего этапа.
На втором этапе решается задача построения координатного пространства и размещения в нем точек-стимулов таким образом, чтобы расстояния между ними, определяемые по введенной метрике, наилучшим образом соответствовали исходным различиям между стимулами. Для решения этой формальной задачи не требуется никаких сведений о самих стимулах, достаточно располагать только матрицей попарных различий между ними. Для построения искомого координатного пространства используется достаточно разработанный аппарат линейной или нелинейной оптимизации. Вводится критерий качества отображения, называемый «стрессом» и измеряющий степень расхождення между исходными различиями Djk и результирующими расстояниями djk. Ищется такая конфигурация точек, которая давала бы минимальное значение этому «стрессу». Значения координат этих точек и являются решением задачи.
Используя эти координаты, мы строим геометрическое представление стимулов в пространстве невысокого числа измерений. Оно должно быть в достаточной степени адекватно исходным данным. Стимулы, которым в исходной матрице соответствуют большие меры различий, должны находиться далеко друг от друга, а стимулы, которым соответствуют малые меры различий, — близко. Формальным критерием адекватности может служить коэффициент корреляции, он должен быть достаточно высоким. Средство повышения точности формального решения состоит в увеличении числа измерений, т. е. размерности пространства r. Чем выше размерность пространства, тем больше возможностей получить более точное решение.
Геометрическое представление стимулов в пространстве невысокого числа измерений является результатом, имеющим самостоятельное значение. Оно даст возможность наглядного представления данных, удобного для визуального анализа, и направления его использования далеко выходят за рамки психометрических исследований.
На третьем этапе решается содержательная задача интерпретации формального результата, полученного на предыдущей стадии. Координатные оси построенного стимульного пространства должны получить смысловое содержание, они должны быть проинтерпретированы как факторы, определяющие расхождения между стимулами. Эта работа является достаточно сложной и может быть выполнена только специалистом, хорошо знакомым с исследуемым материалом. Если на предыдущем этапе достаточно было только информации о попарных различиях между стимулами, то для содержательной интерпретации необходимо тщательное изучение их характеристик.
2.2. Многомерные методы и модели
Каждая строчка таблицы - это координаты соответствующего объекта на плоскости. Графическое изображение всех 10 точек, в соответствии с табл. 2.2.1, приведено на рис. 1.2.1.
Взаимное расположение объектов в точности соответствует исходной конфигурации, предлагаемой наблюдателю (рис. 2.2.1). При этом обращает на себя внимание тот факт, что информация, полученная от наблюдателя, носит неметрический характер, так как расстояния оценивались по шкале порядка. Итоговая же конфигурация воспроизводит метрические соотношения в расположении объектов. Это связано с тем, что информация о различиях, содержащаяся в матрице субъективных оценок, хотя и является по сути порядковой, но обладает избыточностью, которая и позволяет восстановить метрические соотношения.
Таблица 2.2.1. Результаты МШ субъективных оценок
расстояний между 10 объектами (по данным табл. 1.2.1)


Рис. 2.2.1. Субъективное пространство 10 объектов по табл. 2.2.1.
МШ в своих основных трех модификациях позволяет решать три группы задач:
Исходные данные - прямые оценки субъектом различий между стимулами или вычисленные расстояния между объектами, характеризующимися совокупностью признаков. Примером второго типа данных могут являться расстояния между ролями (объектами), вычисленные по совокупности конструктов. МШ позволяет реконструировать психологическое пространство субъекта, как конфигурацию стимулов в осях существенных признаков, по которым эти стимулы различаются субъектом.
Исходные данные - те же, что и в предыдущем случае субъективные различия между стимулами (оцененные прямо или вычисленные), но полученные не от одного, а от группы субъектов. Взвешенная модель индивидуальных различий позволяет получить групповое психологическое пространство стимулов в осях общих для данной группы существенных признаков. Дополнительно к этому для каждого субъекта - индивидуальные веса признаков как меру учета соответствующих точек зрения при различении стимулов.
Исходные данные - результаты упорядочивания каждым из группы субъектов набора стимулов по степени предпочтения. Модель анализа предпочтений позволяет получить групповое психологическое пространство стимулов в осях существенных признаков и размещенные в этом же пространстве идеальные точки для каждого субъекта.
2.3. Неметрическая модель
Это основной вариант многомерного шкалирования, применяемый в настоящее время. Он лежит в основе всех остальных вариантов метода, Исходные данные для этого метода - матрица размерностью P × P, каждый элемент которой - мера (оценка) различия между двумя объектами из Р. Рассмотрим кратко основные математико-статистические идеи метода, необходимые для его использования на практике.
Многомерное шкалирование, как новый шаг в математике, начинается с метрического шкалирования, предложенного в 50-х годах У. Торгерсоном. В модели Торгерсона вводится жесткое предположение о том, что оценки разли чия между объектами равны линейному расстоянию между ними в евклидовом пространстве.
Пусть ij – имеющаяся в распоряжении исследователя оценка различия между объектами i и j – координаты этих объектов по оси k, одной из осей искомого пространства размерность К. Расстояние между объектами в искомом пространстве обозначим как dij. Тогда основное предположение Торгерсона можно выразить формулой:

Торгерсон показал, что при соблюдении этого условия возможен переход от исходной матрицы различий между стимулами к их координатам в пространстве K признаков. Тогда, по Торгерсону, справедливо выражение:

или в матричном виде:

где Х – матрица координат стимулов, размерностью P× К.
Это уравнение аналогично главному уравнению факторного анализа, и решается оно относительно X методом главных компонент с заданным числом K.
В современных алгоритмах МШ метод Торгерсона используется на этапе предварительной оценки координат объектов по матрице исходных различий. Далее следует неметрический этап, соответствующий неметричности исходных данных. На этом этапе исходят из требования соответствия рангового порядка расстояний между объектами в результирующем пространстве ранговому порядку исходных различий, то есть, используя принятые обозначения:

Основной мерой выполнения этого требования является специальный показатель, который называется стресс - мера отклонения итоговой конфигурации объектов от исходных оценок различия в смысле указанного требования рангового соответствия. Иногда дополнительно применяют коэффициент отчуждения тоже как меру подгонки неметрической модели к данным о различии.
Не рассматривая подробно вычислительные проблемы многомерного шкалирования, укажем, что его алгоритм направлен на нахождение оценок координат объектов, минимизирующих значение стресса. Построен этот алгоритм как градиентная процедура. Первый шаг алгоритма - получение стартовой конфигурации, как правило, методом Торгерсона. На каждом последующем шаге, или итерации, координаты стимулов изменяются в сторону уменьшения значения стресса, вычисленного на предыдущем этапе. Итерации повторяются многократно, до выполнения одного из трех заданных изначально условий (в программе SPSS): достижения минимального значения стресса; достижения минимальной разницы между последним и предыдущим значениями стресса; выполнения максимального заданного числа итераций. Каждое из трех условий задано в программе «по умолчанию», но может изменяться пользователем. Уменьшая пороговые величины стресса и его изменения, увеличивая максимальное число итераций, пользователь может добиться повышения точности окончательного решения. Показателем точности является конечная величина стресса. Наиболее приемлемые величины стресса находятся в диапазоне от 0,05 до 0,2.
Одна из основных проблем, возникающих перед исследователем в МШ - это проблема размерности К. Как и при проведении факторного анализа, в М Ш требуется предварительное определение числа шкал. Поэтому от исследователя требуется получить несколько решений в пространствах разной размерности и выбрать из них лучшее. Один из критериев размерности, применяемый для предварительной оценки числа шкал, аналогичен критерию отсеивания Кеттелла в факторном анализе: строится график зависимости стресса от числа шкал по результатам решения в разных размерностях. Истинная размерность соответствует точке перегиба графика после резкого его спада.
Другой критерий числа шкал - абсолютная величина стресса. Если решение одномерно, то приемлемая величина стресса - менее 0,1. Если решение размерностью 2 и выше, то приемлемы значения стресса, меньшие 0,1- 0,15. Однако если уровень ошибок измерения или выборки высок, то можно признать решение и с более высокими значениями стресса. Дополнительно вычисляется величина R2 (RSQ), которая показывает долю дисперсии исходных различий (от единичной), учтенную выделенными шкалами. Чем ближе RSQ к единице, тем полнее данные шкалы воспроизводят исходные различия между объектами.
Окончательный выбор размерности решения определяется на основе критериев интерпретируемости и воспроизводимости, так же, как в факторном анализе. Тем не менее, при размерности 2 и выше, следует избегать решений с величиной стресса выше 0,2. Обычный путь для этого - повышение раз- мерности и исключение объектов.
Результаты применения метода - таблица координат объектов в пространстве K шкал-признаков, величины стресса и RSQ, интерпретация шкал и взаимного расположения объектов по таблице координат.
Исследовалась структура представлений студента о многомерных методах, применяемых в психологии. Студенту было предложено сравнить попарно по степени различия пять методов: множественный регрессионный анализ (МРА), дискриминантный анализ (ДА), кластерный анализ (КА), факторный анализ (ФА) и многомерное шкалирование (МШ). При сравнении было предложено использовать 5-балльную шкалу (1 - очень похожи, 5 - совсем разные). Результаты сравнения приведены в табл. 2.3.1.
Таблица 2.3.1.Результаты попарного сравнения
пяти методов многомерного анализа.

Заключение
Методы многомерного шкалирования предназначены для анализа структуры субъективных данных. Они позволяют выявить факторы, лежащие в основе сходств и различий между стимулами, и построить модель принятия решения о сходствах. Следует заметить, что методы многомерного шкалирования работают только в том случае, когда сходства или различия между всеми стимулами исследуемого множества порождаются одной закономерностью.
Когда же при сравнении одной пары стимулов субъект опирается на одну систему факторов, а при сравнении другой пары — на другую, многомерное шкалирование удовлетворительного результата дать не может. Кроме того, решение будет существенно зависеть от предлагаемого набора стимулов (контекста). Одни и те же стимулы, включенные в разные наборы, могут описываться разными факторами.
Это обстоятельство является следствием того факта, что различия между стимулами одного набора могут характеризоваться расхождениями по одним факторам, а различия между стимулами другого набора — расхождениями по другим факторам. Так, если мы будем предъявлять испытуемому стимулы одинаковой формы, но разного цвета, он при сравнении будет обращать внимание только на цвет. Если мы будем в то же время варьировать стимулы по форме, то испытуемый будет принимать во внимание также и форму.
Позволим себе еще раз подчеркнуть, что с помощью предлагаемой процедуры многомерного шкалирования можно выявить только те факторы, по которым различается стимулы исследуемого набора, но нельзя выявить факторы, по которым все они сходны.

Список используемой литературы
Айвазян С.А., Бухштабер В.М, Енюков И.С. и др. Прикладная статистика: классификация и снижение размерности. — М.: Финансы и статистика, 1989.
Дэйвисон М. Многомерное шкалирование: методы наглядного представления данных. — М.: Финансы и статистика, 1988.
Наследов А.Д. Математические методы психологического исследования. СПБ, 2007.
Терехина А. Ю. О двух задачах индивидуального многомерного шкалирования, Автоматика и телемеханика, № 4, 1974, с. 135-142.
Терехина А. Ю. Многомерный анализ субъективных данных о сходствах или различиях. Препринт, ВНИИСИ, M., 1978.
Толстова Ю.Н. Основы многомерного шкалирования. — М.: КДУ, 2006.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно
    Введите ваш e-mail
    Файл с работой придёт вам на почту после оплаты заказа
    Успешно!
    Работа доступна для скачивания 🤗.