это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
2478137
Ознакомительный фрагмент работы:
Введение
Подземная нефтегазовая гидромеханика есть наука о движении нефти, воды, газа и их смесей в пластах, сложенных пористыми и трещиноватыми горными породами. Жидкость, газ, смесь жидкости и газа, т. е. всякая текучая среда, именуется общим термином флюид, если не ставится задача выделить характерные особенности движения данной среды. Горные породы, которые могут служить хранилищами нефти, газа и отдавать их при разработке называют коллекторами.
Теоретической основой подземной гидромеханики является теория фильтрации – наука, описывающая с позиций механики сплошной среды движение флюидов в пористых средах, т. е. в твёрдых телах, пронизанных системой сообщающихся между собой пустот (пор), что делает их проницаемыми для жидкостей.
Понятие о моделировании
Нефть и природные газы заключены в недрах Земли, при этом нефтяные и газовые месторождения чаще приурочены к пластам терригенных и карбонатных осадочных пород (песчаников, известняков, алевритов, глин), представляющих собой скопления зерен минералов, связанных цементирующим материалом и имеющими непроницаемые кровлю и подошву. Поровое пространство терригенных пород есть сложная нерегулярная система сообщающихся или изолированных межзеренных пустот с размерами пор порядка единиц или десятков микрометров. В карбонатных породах (известняках, доломитах) система пор более неоднородна, кроме того, более развита система вторичных пустот, возникающих после образования самой породы. Сюда относятся трещины, вызванные тектоническими нарушениями, а также каверны и каналы, возникшие при растворении скелета породы водой или его химической реакции с ней. Протяженность трещин и размеры каверн могут намного превосходить размеры первичных пор.
Коллекторы образуют пласт конечной толщины, значительной ширины и протяженности. Пласты коллекторов отличаются развитой неоднородностью по площади и многослойностью, а также часто пересекаются крупными тектоническими нарушениями – разрывами сплошности пород. Природные жидкости: нефть, газ, подземные воды и их смеси находятся в пустотах, т. е. в порах и трещинах коллекторов. Добыча нефти и газа, исследование пластов ведутся через отдельные скважины диаметром до 20 см, отстоящих друг от друга на сотни метров.
Из сказанного вытекает следующая особенность теории фильтрации нефти и газа в природных пластах, а именно, необходимость одновременного рассмотрения процессов в областях, характерные размеры которых различаются на порядки: размер пор (единицы и десятки микрометров), диаметр скважин (десятки сантиметров), толщины пластов (единицы и десятки метров), расстояния между скважинами (сотни метров), протяженность месторождений (десятки и сотни километров). Неоднородность пластов (по толщине и площади) может быть значительной.
Неоднородности по строению залежей, широкомасштабность областей исследования, а также значительная широта фациального состава коллекторов и сложный нерегулярный характер структуры порового пространства обуславливают ограниченность и приближенность сведений о пласте и флюидах, полученных при геологических и геофизических исследованиях. Поэтому исследование фильтрации в пластах невозможно без абстрактного (математического) и физического (лабораторного) моделирования.
При абстрактном моделировании реальные процессы описываются некоторой математической моделью на основе методов осреднения характерных параметров по времени, пространству и статистической выборке. Последнее позволяет перейти от дискретных распределений на уровне отдельных пор к непрерывным усреднённым характеристикам процессов, относящимся к объемам сред некоторой величины и, следовательно, использовать хорошо разработанные аппараты механики сплошных сред и дифференциального исчисления. Переход к макроскопическому описанию процессов в подземной гидромеханике означает, что все вводимые характеристики и параметры, используемые в постановке и решении задач, являются в общем случае функциями точек пористой среды. Далее понятия пористой среды и точек пористой среды будут употребляться в модельном смысле, то есть в смысле математической модели и характеристики математической модели, используемой для описания физического процесса (в данном случае – фильтрации). Понятия точки в математическом и физическом смыслах представляются совершенно разными объектами. Если вырезать объем пористой среды и ввести систему координат, связанную с образцом, то каждому бесконечно малому элементу объема можно приписать упорядоченную тройку чисел, которые и будут задавать «математическую точку» пористой среды. Однако объем «математической точки» настолько мал, что она всегда будет полностью находиться или в поре (тогда, например, скорость флюида отлична от нуля), или в твердом скелете (тогда скорость флюида будет равна нулю). Поэтому при вычислении физических модельных характеристик в подземной гидромеханике используется «физическая точка». Под «физической точкой» подразумевается такой объем пористой среды, который является достаточно большим для того, чтобы вводимая физическая характеристика не зависела от объема образца, но достаточно малым по сравнению со всей областью, в которой вводится эта характеристика. Последнее обстоятельство – малость объема образца по сравнению со всей рассматриваемой областью – позволяет говорить о том, что рассматривается физически бесконечно малый объем («физическая точка»). Объем пористой среды, который можно принять за физическую точку, называется элементарным или представительным объемом. Все вводимые далее характеристики будут определяться на элементарных объемах и для элементарных объемов. Рассмотренная ситуация с введением физических и материальных характеристик в подземной гидромеханике представляется обычной для всех моделей механики сплошных сред. Например, газ так же, как и жидкость, состоит из отдельных молекул и атомов. Поэтому при введении в гидромеханике физических характеристик также рассматриваются физические точки, но величины элементарных объемов много меньше, чем в подземной гидромеханике. В самом деле, в кубике воздуха с ребром 10-3 мм при нормальных условиях содержится 27·106 молекул, и элементарный объем составляет доли миллиметра. В подземной гидромеханике вместо молекул, например, в песчанике, выступают песчинки, и элементарный объем может составлять уже кубические сантиметры, а для других типов коллекторов десятки кубических сантиметров и даже метров. Однако по сравнению с объемом залежи элементарный объем все равно очень мал. Подобное введение характеристик практически всегда возможно.
Математическое моделирование предполагает использование целого ряда зависимостей, позволяющих в той или иной мере отождествить математическую модель с реальными физическими средами и процессами. В силу разнообразия реальных сред, процессов и огромного числа взаимосвязанных факторов для получения зависимостей в подземной гидромеханике широко используется физическое моделирование, основанное на теории подобия.
Адекватность абстрактных и физических моделей реальным процессам требует выполнения следующих требований при их построении:
1) полнота, т. е. содержание достаточного числа признаков реального объекта;
2) непротиворечивость, т. е. включенные признаки не должны противоречить друг другу;
3) реализуемость, т. е. построенная математическая модель допускает аналитическое или численное решение, а физическая – реализацию в искусственных условиях;
4) компактность и экономичность, т. е. сбор информации, подготовка и реализация модели должны быть достаточно просты, обозримы и экономически целесообразны.
При моделировании пластов и фильтрационных процессов принципиально невозможно достижение точного количественного описания, и, следовательно, основная задача исследования заключается в установлении качественных закономерностей, устойчивых тенденций, а также количественных соотношений, устойчивых к вариации исходных данных. Целью моделирования является не столько точное определение всех характеристик процесса, сколько расширение той совокупности сведений, которые учитываются при выборе системы разработки или метода воздействия на пласт. При этом уточнение и коррекция данных сведений возможны только на основе анализа последующего поведения пласта. Решающую роль играет постановка задачи и такой анализ результатов ее реализации, который позволяет сделать некоторые общие, скорее, качественные заключения. Усложнение модели, т. е. увеличение признаков сверх определяющих основные закономерности, может привести не к увеличению точности, а к качественно неверному результату. Такое положение дел особенно усугубляется в настоящее время из-за использования все более мощной вычислительной техники, позволяющей преодолеть многие технические трудности. Однако познавательная ценность извлекаемых результатов еще более определяется адекватностью модели, четкостью постановки задачи расчета, глубиной предварительного анализа имеющихся данных по их точности и достоверности.
Модели коллекторов
Моделирование коллекторов и классификация их параметров проводится по трём направлениям: геометрическое, механическое и связанное с наличием жидкости.
С геометрической точки зрения все коллекторы можно подразделить на две большие группы: гранулярные (поровые) и трещиноватые. Ёмкость и фильтрация в пористом коллекторе определяется структурой порового пространства между зёрнами породы. Для второй группы характерно наличие развитой системы трещин, густота которых зависит от состава пород, степени уплотнения, мощности, метаморфизма, структурных условий, состава и свойств вмещающей среды. Чаще всего имеют место коллекторы смешанного типа, для которых ёмкостью служат трещины, каверны, поровые пространства; ведущая роль в фильтрации флюидов принадлежит развитой системе микротрещин, сообщающих эти пустоты между собой. В зависимости от того, какие категории пустот являются путями фильтрации или главным вместилищем флюида, различают коллекторы: трещиновато-пористые, трещиновато-каверновые и т. д. При этом первая часть в названии определяет вид пустот, по которым происходит фильтрация.
С целью количественного описания реальные сложные породы моделируют идеализированными моделями.
Фиктивный грунт есть среда, состоящая из шариков одного размера, уложенных во всем объёме пористой среды одинаковым образом по элементам из восьми шаров в углах ромбоэдра (рисунок 1.1). Острый угол раствора ромбоэдра a меняется от 60о до 90о. Наиболее плотная укладка частиц при a = 60о и наименее плотная при a = 90о (куб).
С целью более точного описания реальных пористых сред в настоящее время предложены более сложные модели фиктивного грунта: с различными диаметрами шаров, элементами нешарообразной формы и т. д.
Идеальный грунт есть среда, состоящая из трубочек одного размера, уложенных одинаковым образом по элементам из четырех трубочек в углах ромба. Плотность укладки меняется от угла раствора ромба.
Трещиновато-пористые коллекторы рассматриваются как совокупность двух разномасштабных пористых сред (рисунок 1.2): системы трещин (среда 1), где пористые блоки играют роль «зёрен», а трещины – роль извилистых«пор», и системы пористых блоков (среда 2).
Рисунок 1.1 – Элементы моделей фиктивного грунта
Рисунок 1.2 – Схема трещиновато-пористой среды
Рисунок 1.3 – Схема модели трещиноватой среды с одной системой трещин
Рисунок 1.4 – Схема модели трещиноватого пласта с тремя ортогональными сетками трещин
В простейшем случае трещиноватый пласт моделируется одной сеткой горизонтальных трещин некоторой протяженности (рисунок 1.3), причём все трещины одинаково раскрыты и равно отстоят друг от друга (одномерный случай). В большинстве случаев трещиноватый пласт характеризуется наличием двух взаимно-перпендикулярных систем вертикальных трещин (плоский случай). Такая порода может быть представлена в виде модели коллектора, расчленённого двумя взаимно-перпендикулярными системами трещин с равными величинами раскрытия dт и линейного размера блока породы lт. В пространственном случае используют систему трёх взаимно-перпендикулярных систем трещин (рисунок 1.4).
Всякое изменение сил, действующих на горные породы, вызывает их деформацию, а также изменение внутренних усилий – напряжений. Таким образом, динамическое состояние горных пород, как и флюидов, описывается реологическими соотношениями. Обычно реологические зависимости получают в результате анализа экспериментальных данных натурных исследований или физического моделирования. Если объём пустот не изменяется или изменяется так, что его изменением можно пренебречь, то такую среду можно назвать недеформируемой. Если происходит линейное изменение объёма от напряжения, то такая среда – упругая, иначе ещё её называют кулоновской. К таким средам относятся песчаники, известняки, базальты. В упругих телах при снятии нагрузки объём восстанавливается полностью и линия нагрузки совпадает с линией разгрузки. Многие породы деформируются с остаточным изменением объёма, т. е. линия нагружения не совпадает с линией разгружения (петля гистерезиса). Такие породы называются пластичными (глины), текучими (несцементируемые пески) или разрушаемыми.
Горные породы разделяют по ориентированности изменения их характеристик в пространстве. Изотропия – это независимость изменения физических параметров от направления, анизотропия – это различные изменения по отдельным направлениям. Понятие ориентированности, применительно к коллекторам, связано, скорее с геометрией расположения частиц, трещин. Так частицы могут располагаться хаотично и упорядоченно в пространстве. Упорядоченные структуры – анизотропны по поверхностным параметрам.
Методы подземной гидродинамики используются для создания математических фильтрационных моделей, которые дают пространственно-временное описание процессов движения и массопереноса флюидов в пористом пласте.
Математические фильтрационные модели можно разбить на следующие большие группы: балансовые модели и сеточные модели.
Балансовые модели. Балансовые модели характеризуются простотой и невысокими требованиями к информации о фильтрационных свойствах пласта и к информации о работающих в пласте скважинах. В балансовой модели весь пласт рассматривается как единый однородный объем с усреднёнными характеристиками. В основе балансовой модели лежит уравнение материального баланса для всей залежи с учетом общего количества отбираемого из залежи (или закачиваемого в неё) количества жидкости или газа. В балансовой модели не рассматривается фильтрация газа к отдельным скважинам или перетоки флюида внутри пласта. В этом смысле балансовые модели являются нульмерными.
Существуют различные модификации балансовых моделей – зональные, блочные, слоистые и их сочетания. Указанные модели получаются в результате разбиения залежи на отдельные области (зоны, блоки, слои) с близкими фильтрационными свойствами, для каждой из которых записываются уравнения материального баланса, а также уравнения перетоков для граничащих друг с другом областей.
Сеточные модели. При построении сеточных моделей залежь разбивается на множество ячеек, размеры и формы которых могут существенно меняться в зависимости от типа каждой конкретной залежи, а также в зависимости от необходимого уровня точности модельных расчётов. Для расчётов процессов фильтрации либо используются соответствующие дифференциальные уравнения, описывающие гидродинамическое поле всей залежи, либо для каждой ячейки составляются уравнения материального баланса фильтрующегося флюида и затем решается полученная система алгебраических уравнений.
Выбор модели залежи определяется как степенью точности, которую необходимо получить при расчётах, так и степенью детализации доступной о залежи информации.
Особенности теории движения жидкости и газа в природных пластах
Месторождения нефти и природного газа чаще всего приурочены к поднятиям или складкам пластов терригенных и карбонатных осадочных пород (песчаников, известняков, алевролитов, глин),представляющих собой скопления зерен минералов, связанных цементирующим материалом и преобразованных в результате геологических процессов.
Поровое пространство терригенных пород — сложная нерегулярная система сообщающихся (иногда — изолированных) межзеренных пустот с размерами пор, составляющими единицы или десятки микрометров (рис. 1).
РИС. 1. Шлиф нефтяного песчаника
В карбонатных породах (известняках, доломитах) система пор более неоднородна, кроме того, гораздо более развита система вторичных пустот, возникших после образования самой породы. Сюда относятся трещины, вызванные тектоническими напряжениями, а также каналы и каверны, возникшие благодаря растворению скелета породы водой (иногда сопровождающемуся химической реакцией). Протяженность трещин и размеры каверн могут намного превосходить размеры первичных пор.
Жидкие или газообразные углеводороды, плотность которых меньше плотности воды, скапливаются в поднятиях («ловушках») пород, вытесняя ранее находившуюся там воду. Чтобы месторождение нефти или газа могло сохраниться, пласты-коллекторы должны быть изолированы от выше- и нижележащих проницаемых пластов кровлей и подошвой: слоями непроницаемых пород, чаще всего глин или соли (рис. 2).
РИС. 2. Схема залежи нефти и газа: 1 — глины; 2 — глищстые песчаники; 3— плотные прослои; 4 — пески, песчаники
Строение нефтяных и газовых залежей осложняется значительной неоднородностью и прежде всего многослойностью слагающих их пород. Нефте- и газоносные пласты часто пересекаются крупными тектоническими нарушениями — разрывами сплошности пород. Добыча нефти и газа, разведка месторождений и исследование пластов ведутся через отдельные скважины диаметром 10—20 см, отстоящие друг от друга на сотни метров.
Мы напомнили эти общеизвестные факты, чтобы подчеркнуть вытекающие из них особенности теории фильтрации нефти и газа в природных пластах. Одна из них заключается в необходимости одновременно рассматривать процессы в областях, характерные размеры которых различаются на порядки: размер пор (единицы и десятки микрометров), диаметр скважин (десятки сантиметров), толщины пластов (единицы и десятки метров), расстояния между скважинами (сотни метров), протяженность месторождений (до десятков и даже сотен километров). Кроме того, неоднородность пластов (по толщине и площади) имеет характерные размеры практически любого масштаба.
Сведения о пласте при всем их разнообразии всегда ограничены. Они складываются из геологической и геофизической информации: данных исследования образцов породы и гидродинамических исследований скважин, результатов анализа отобранных из скважин проб нефти, газа и пластовой воды; и, наконец, из истории разработки, т. е. совокупности данных по динамике изменения давлений, отбора или закачки нефти и воды по отдельным скважинам и в целом по объекту. Даже если имеется весь перечисленный объем информации, что бывает далеко не всегда, ее недостаточно для однозначного построения модели пласта. Это ясно хотя бы из того, что любая модель строится на интерполяции по пласту данных, полученных на основе единичных скважинных измерений, и обычно нет веских оснований считать это адекватным представлением того, что на самом деле происходит в пласте. В этих условиях основная задача исследования заключается в установлении качественных закономерностей, устойчивых тенденций, а также количественных соотношений, устойчивых к вариации исходных данных. Целью расчета оказывается не столько точное определение всех характеристик процесса, сколько расширение той совокупности сведений, которые учитываются при выборе, например, системы разработки месторождения или метода воздействия на пласт. Последующее поведение пласта позволяет внести коррективы и уточнить принятую модель.
Все это сближает подземную гидродинамику с теоретической физикой. Решающую роль играет постановка задачи и такой анализ результатов ее решения, который позволяет сделать некоторые общие, скорее, качественные, заключения. Напротив, увеличение точности качественно ясных результатов оказывается зачастую ненужным. Такое положение дел существовало всегда, и появление и широкое распространение вычислительных машин лишь усугубило его. С помощью машинной математики многие технические трудности были преодолены, в результате чего возможности гидродинамических расчетов неизмеримо выросли. Однако познавательная ценность извлекаемых результатов еще более чем в домашинную эру определяется адекватностью модели, четкостью постановки задачи расчета и глубиной предварительного анализа имеющихся данных.
Список литературы
1. Баренблатт Г.И., Ентов В.М., Рыжик В.М. Теория нестационарной фильтрации жидкости и газа. М., Недра, 1972.
2. https://www.bibliofond.ru/view.aspx?id=7949263. https://infopedia.su/5x293b.html4. https://www.tehnik.top/2018/03/blog-post_979.html
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнить курсовой по Транспортной логистике. С-07082
Курсовая, Транспортная логистика
Срок сдачи к 14 дек.
Роль волонтеров в мероприятиях туристской направленности
Курсовая, Координация работы служб туризма и гостеприимства
Срок сдачи к 13 дек.
Контрольная работа
Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления
Срок сдачи к 30 дек.
Написать курсовую по теме: Нематериальные активы и их роль в деятельности предприятия.
Курсовая, Экономика организации
Срок сдачи к 14 дек.
написать доклад на тему: Процесс планирования персонала проекта.
Доклад, Управение проектами
Срок сдачи к 13 дек.
Заполните форму и узнайте цену на индивидуальную работу!