это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
2536530
Ознакомительный фрагмент работы:
Введение
Регрессия — это метод, используемый для моделирования и анализа отношений между переменными, а также для того, чтобы увидеть, как эти переменные вместе влияют на получение определенного результата. Линейная и логистическая регрессии обычно являются первыми видами регрессии, которые изучают в таких областях, как машинное обучение и наука о данных. Оба метода считаются эффективными, так как их легко понять и использовать. Однако, такая простота также имеет несколько недостатков, и во многих случаях лучше выбирать другую регрессионную модель. Существует множество видов регрессии, каждый из которых имеет свои достоинства и недостатки. Ниже рассмотрим один из таких методов.
1.Полиномиальная регрессия.
Повысить точность оценок может позволить применение моделей нелинейной регрессии. Часто используют полиномиальные модели. Как показывает опыт большинства исследователей, среди нелинейной полиномиальной регрессии чаще всего используется парабола второй степени в отдельных случаях — полином третьего порядка. Ограничения в использовании полиномов более высоких степеней связаны с требованием однородности исследуемой совокупности чем выше порядок полинома, тем больше изгибов имеет кривая и соответственно менее однородна совокупность по результативному признаку.
Для создания такой модели, которая подойдет для нелинейно разделяемых данных, можно использовать полиномиальную регрессию. В данном методе проводится кривая линия, зависимая от точек плоскости. В полиномиальной регрессии степень некоторых независимых переменных превышает 1. Например, получится что-то подобное:
Y = a_1*X_1 + (a_2)²*X_2 + (a_3)⁴*X_3 ……. a_n*X_n +
У некоторых переменных есть степень, у других — нет.
В статистике, полиномиальной регрессии является одной из форм регрессионного анализа, в котором зависимость между независимой переменной х и зависимой переменной у моделируется как п - й степени многочлена в х . Полиномиальная регрессия подходит нелинейную зависимость между величиной х и соответствующим условным средним от у , обозначаются Е ( у | х ). Хотя полиномиальная регрессия подгоняет нелинейную модель к данным, как проблема статистической оценки она является линейной в том смысле, что функция регрессии E ( y | x ) линейна по неизвестным параметрам, которые оцениваются по данным. По этой причине полиномиальная регрессия считается частным случаем множественной линейной регрессии . Сравните линейную и полиномиальную регрессии ниже.
Линейная и полиномиальная регрессии с нелинейно разделенными данными
Несколько важных пунктов о полиномиальной регрессии:
Моделирует нелинейно разделенные данные (чего не может линейная регрессия). Она более гибкая и может моделировать сложные взаимосвязи.
Полный контроль над моделированием переменных объекта (выбор степени).
Необходимо внимательно создавать модель. Необходимо обладать некоторыми знаниями о данных, для выбора наиболее подходящей степени.
При неправильном выборе степени, данная модель может быть перенасыщена.
2.Особенности применения регрессионных моделей
Регрессионная модель – это функция, описывающая зависимость между количественными характеристиками сложных систем. Одним из условий регрессионной модели является предположение о линейной независимости объясняющих переменных, т. е., решение задачи возможно лишь тогда, когда столбцы и строки матрицы исходных данных линейно независимы.
Под мультиколлинеарностью понимается высокая взаимная коррелированность объясняющих переменных, которая приводит к линейной зависимости нормальных уравнений.
Существует несколько способов для определения наличия или отсутствия мультиколлинеарности. Один из подходов заключается в анализе матрицы коэффициентов парной корреляции
Для устранения или уменьшения мультиколлинеарности используется ряд методов.
Наиболее распространенные в таких случаях следующие приемы: исключение одного из двух сильно связанных факторов, переход от первоначальных факторов к их главным компонентам, число которых быть может меньше, затем возвращение к первоначальным факторам.
Самый простой из них (но не всегда самый эффективный) состоит в том, что из двух объясняющих переменных, имеющих высокий коэффициент корреляции (больше 0,8), одну переменную исключают из рассмотрения. При этом какую переменную оставить, а какую удалить из анализа, решают в первую очередь на основании экономических соображений. Если с экономической точки зрения ни одной из переменных нельзя отдать предпочтение, то оставляют ту из двух переменных, которая имеет больший коэффициент корреляции с зависимой переменной.
Еще одним из возможных методов устранения или уменьшения мультиколлинеарности является использование стратегии шагового отбора, реализованную в ряде алгоритмов пошаговой регрессии.
Наиболее широкое применение получили следующие схемы построения уравнения множественной регрессии: метод включения факторов и метод исключения – отсев факторов из полного его набора.
Ни одна этих процедур не гарантирует получения оптимального набора переменных. Однако при практическом применении они позволяют получить достаточно хорошие наборы существенно влияющих факторов.
Особым случаем мультиколлинеарности при использовании временных выборок является наличие в составе переменных линейных или нелинейных трендов. В этом случае рекомендуется сначала выделить и исключить тренды, а затем определить параметры регрессии по остаткам.
Игнорирование наличия трендов в зависимой и независимой переменных ведет к завышению степени влияния независимых переменных на результирующий признак, что получило название ложной корреляции.
Большим препятствием к применению регрессии является ограниченность исходной информации, при этом наряду с указанными выше затрудняющими обстоятельствами (мультиколлинеарность, зависимость остатков, небольшой объем выборки и т. п.) ценность информации может снижаться за счет ее «засоренности», т. е. проявления новых обстоятельств, которые ранее не были учтены.
Резко отклоняющиеся наблюдения могут быть результатом действия большого числа сравнительно малых случайных факторов, которые в достаточно редких случаях приводят к большим отклонениям, либо это действительно случайные один или несколько выбросов, которые можно исключить как аномальные. Наиболее распространенные в таких случаях следующие приемы: исключение одного из двух сильно связанных факторов, переход от первоначальных факторов к их главным компонентам, число которых быть может меньше, затем возвращение к первоначальным факторам.
Заключение
Уравнение регрессии позволяет найти значение зависимой переменной, если величина независимой или независимых переменных известна. Практически, речь идет о том, чтобы, анализируя множество точек на графике (т.е. множество статистических данных), найти линию, по возможности точно отражающую заключенную в этом множестве закономерность (тренд, тенденцию), линию регрессии.
Список литературы
1. Басовский Л.Е., Прогнозирование и планирование в условиях рынка, учебное пособие.- М.: ИНФРА-М, - 2002.-260с.
2. Бережная Е.В., Бережной В.И., Математические методы моделирования экономических систем, учебное пособие, 2е изд.,- М.: Финансы и статистка, - 2005, 432с.3. Гладилин А.В., Эконометрика: учебное пособие. – М.:КНОРУС, 2006.–232с.
4. Елисеева И.И., Эконометрика: учебник, 2е изд.- М.: Финансы и статистика, 2005.-576с.
5. Новиков Ф.А., Яценко А.Д.. Microsoft Office. С.-П.:БХВ-Петербург, 2002г. стр.449-458
6. Орлова И.В., Половников В.А.Экономико-математические методы и модели: компьютерное моделирование: Учеб. пособие – М.: Вузовский учебник, 2007.
7. Эконометрика: Учебник / Под ред. И.И.Елисеевой. - 2-е изд.; перераб. и доп. - М.: Финансы и статистика, 2005. - 576с.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнить 2 контрольные работы по Информационные технологии и сети в нефтегазовой отрасли. М-07765
Контрольная, Информационные технологии
Срок сдачи к 12 дек.
Архитектура и организация конфигурации памяти вычислительной системы
Лабораторная, Архитектура средств вычислительной техники
Срок сдачи к 12 дек.
Организации профилактики травматизма в спортивных секциях в общеобразовательной школе
Курсовая, профилактики травматизма, медицина
Срок сдачи к 5 дек.
краткая характеристика сбербанка анализ тарифов РКО
Отчет по практике, дистанционное банковское обслуживание
Срок сдачи к 5 дек.
Исследование методов получения случайных чисел с заданным законом распределения
Лабораторная, Моделирование, математика
Срок сдачи к 10 дек.
Проектирование заготовок, получаемых литьем в песчано-глинистые формы
Лабораторная, основы технологии машиностроения
Срок сдачи к 14 дек.
Вам необходимо выбрать модель медиастратегии
Другое, Медиапланирование, реклама, маркетинг
Срок сдачи к 7 дек.
Ответить на задания
Решение задач, Цифровизация процессов управления, информатика, программирование
Срок сдачи к 20 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Информационные технологии
Срок сдачи к 11 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Геология
Срок сдачи к 11 дек.
Разработка веб-информационной системы для автоматизации складских операций компании Hoff
Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления
Срок сдачи к 1 мар.
Нужно решить задание по информатике и математическому анализу (скрин...
Решение задач, Информатика
Срок сдачи к 5 дек.
Заполните форму и узнайте цену на индивидуальную работу!