это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
2643544
Ознакомительный фрагмент работы:
Плазменная сварка – сварка, источником энергии при которой являются плазменный поток.
Используется для сварки нержавеющих сталей, вольфрама, молибдена, сплавов никеля в авиационной промышленности, приборостроении. Плазменная сварка характеризуется глубоким проплавлением металла, что позволяет сваривать металлические листы толщиной до 9 мм. Выполняется в любом положении в пространстве.
В плазменной сварке для получения плазмы применяются плазменные горелки, состоящие из вольфрамового электрода, труб водяного охлаждения, подачи газа, сопла плазмы.
Температура в плазменной дуге достигает 30 000°С, в отличие от плазмы электрической дуги, температура которой – 5000-7000°С.
В плазмотроне в зону плазменной дуги подводится газ, образующий плазму. Газ нагревается дугой и ионизируется. Благодаря тепловому расширению газа, увеличивающему объем газа в 50-100 раз, происходит скоростное истекание его из канала сопла плазмотрона. Кинетическая энергия ионизированных частиц газа и тепловая энергия является основными источником энергии для сварки.
В плазмотроне используется в основном горелки постоянного тока.
В плазменной сварке возможны следующие разновидности:
сварка плазменной дугой, горящей между не плавящимся электродом и изделием;
сварка плазменной струей, горящей между не плавящимся электродом и соплом плазмотрона. Плазма выдувается газовой струей.
В качестве плазмообразующего газа используются: азот, кислород, аргон, воздух.
1 Методы и история создания плазменной сваркиАтмосферное плазменное напыление англ. Atmospheric plasma spraying (APS) запатентован Giannini and Ducati в 1960 г., Gage в 1962 г. Базируется на применении Плазменного генератора Гердиена, изобретенного в 1922 г.
Вакуумное плазменное напыление англ. Vacuum plasma spraying (VPS), или Low-Pressure Plasma Spraying(LPPS) Приоритет изобретение отдают сотруднику фирмы Plasmadyne Мюльбергеру, в 1973 г.
Плазменное напыление в контролируемой атмосфере англ. Controlled-atmosphere plasma spraying (CAPS) Mash, Stetson и Hauck в 1961 г. первыми сообщили о напылении плазмой в камере, заполненной инертным газом. Эту технику назвали Inert Plasma Spraying (IPS). Другой способ, позволяющий изолировать плазменную струю от окружающей атмосферы, был изобретен Okada и Maruo в 1968 г. и назывался Shrouded Plasma Spraying (SPS). В этом способе защитный газ подавался из сопла, присоединенного к аноду плазмотрона, близко к подложке, что позволяло удалять плазмообразующий газ [1].
2 Плазменная сваркаПлазменная сварка является дальнейшим продолжением и усовершенствованием аргонодуговой сварки вольфрамовым неплавящимся электродом. Согласно ГОСТу 2601-84, плазменная сварка – сварка плавлением, при которой нагрев проводится сжатой дугой. Сжатая дуга – дуга, столб которой сжат с помощью сопла плазменной горелки, потока газа или внешнего электромагнитного поля. Плазменную сварку осуществляют сжатой дугой прямого и косвенного действия. Сжатую дугу прямого действия получают при включении изделия в сварочную цепь, активные пятна дугового разряда (катодное и анодное) располагаются на вольфрамовом или на неплавящемся электроде из другого материала и изделии. При получении сжатой дуги косвенного действия изделие в сварочную цепь не включается, активные пятна дугового разряда находятся на электроде и на поверхности сопла. При нагреве изделия дугой косвенного действия передача теплоты осуществляется теплопроводностью, конвекцией и излучением плазмы. При нагреве сжатой дугой прямого действия к перечисленным механизмам теплопередачи добавляется передача энергии заряженными частицами, двигающимися в электрическом поле.
Преимущества плазменной сварки следующие:
- меньшее влияние возможного изменения расстояния от торца сопла до изделия на геометрические размеры зоны проплавления;
- меньшее влияние изменение тока на форму дуги, а, следовательно, и на стабильность проплавления металла;
- высокая надежность зажигания дуги благодаря дежурной дуге;
- отсутствие включений вольфрама в сварном соединении;
- повышенная скорость сварки;
- меньшее тепловложение и, следовательно, коробление изделий.
Если принять одинаковую скорость сварки, то при плазменной сварке необходим ток в два раза меньший по сравнению с аргонодуговой, сварные швы более узкие и с уменьшенной зоной термического влияния, большая глубина проплавления благодаря более высокой концентрации теплового потока на изделии. При плазменной сварке более продолжительный срок службы электрода, так как он защищен медным соплом и контакт с деталью или присадочной проволокой исключен [1].
3 Сущность способа
Плазма – ионизированный газ, содержащий электрически заряженные частицы и способный проводить ток. Ионизация газа происходит при его нагреве. Степень ионизации тем выше, чем выше температура газа. В центральной части сварочной дуги газ нагрет до температур 5000-30000° С, имеет высокую электропроводность, ярко светится и представляет собой типичную плазму. Плазменную струю, используемую для сварки и резки, получают в специальных плазматронах, в которых нагревание газа и его ионизация осуществляются дуговым разрядом в специальных камерах. Вдуваемый в камеру газ, сжимая столб дуги в канале сопла плазматрона и охлаждая его поверхностные слои, повышает температуру столба. В результате струяпроходящего газа, нагреваясь до высоких температур, ионизируется и приобретает свойства плазмы. Увеличение при нагреве объема газа в 50-100 и более раз приводит к истечению плазмы со сверхзвуковыми скоростями. Плазменная струя легко расплавляет любой металл.
Дуговую плазменную струю для сварки и резки получают по двум основным схемам. При плазменной струе прямого действия изделие включено в сварочную цепь дуги, активные пятна которой располагаются на вольфрамовом электроде и изделии. При плазменной струе косвенного действия активные пятна дуги находятся на вольфрамовом электроде и внутренней или боковой поверхности сопла. Плазмообразующий газ может служить также и защитой расплавленного металла от воздуха. В некоторых случаях для защиты расплавленного металла используют подачу отдельной струи специального, более дешевого защитного газа. Газ, перемещающийся вдоль стенок сопла, менее ионизирован и имеет пониженную температуру. Благодаря этому предупреждается расплавление сопла. Однако большинство плазменных горелок имеет дополнительное водяное охлаждение.
Дуговая плазменная струя – интенсивный источник теплоты с широким диапазоном технологических свойств. Ее можно использовать для нагрева, сварки или резки как электропроводных металлов, так и неэлектропроводных материалов, таких как стекло, керамика и др. (плазменная струя косвенного действия). Тепловая эффективность дуговой плазменной струи зависит от величины сварочного тока и напряжения, состава, расхода и скорости истечения плазмообразующего газа, расстояния от сопла до поверхности изделия, скорости перемещения горелки (скорости сварки или резки) и т. д. Геометрическая форма струи может быть также различной (квадратной, круглой и т. д.) и определяться формой выходного отверстий сопла [2].
4 Техника сваркиПитание дуги, как правило, осуществляется переменным или постоянным током прямой полярности (минуя на электроде). Возбуждают дугу с помощью осциллятора. Для облегчения возбуждения дуги прямого действия используют дежурную дугу, горящую между электродом и соплом горелки. Для питания плазмообразующей дуги требуются источники сварочного тока с рабочим напряжением до 120 В, а в некоторый случаях и более высоким; для питания плазматрона, используемого для резки, оптимально напряжение холостого хода источника питания до 300 В.
Плазменной струей можно сваривать практически все металлы в нижнем и вертикальном положениях. В качестве плазмообразующего газа используют аргон или гелий, которые также могут быть и защитными. К преимуществам плазменной сварки относятся высокая производительность, малая чувствительность к колебаниям длины дуги, устранение включений вольфрама в металле шва. Без скоса кромок можно сваривать металл толщиной до 15 мм с образованием провара специфической формы. Это объясняется образованием сквозного отверстия в основном металле, через которое плазменная струя выходит на обратную сторону изделия. Расплавляемый в передней части сварочной ванны металл давлением плазмы перемещается вдоль стенок сварочной ванны в ее хвостовую часть, где кристаллизуется, образуя шов. По существу, процесс представляет собой прорезание изделия с заваркой места резки [3].
Плазменной струей можно сваривать стыковые и угловые швы. Стыковые соединения на металле толщиной до 2 мм можно сваривать с отбортовкой кромок, при толщине свыше 10 мм рекомендуется делать скос кромок. В случае необходимости используют дополнительный металл. Для сварки металла толщиной до 1 мм успешно используют микроплазменную сварку струей косвенного действия, в которой сила сварочного тока равна 0,1-10 А.
Резка плазменной струей основана на расплавлении металла в месте реза и его выдувании потоком плазмы. Плазменную струю используют для резки металла толщиной от долей до десятков миллиметров. Для резки металла малой толщины используют плазменную струю косвенного действия. При повышенной толщине металла лучшие результаты достигаются при плазменной струе прямого действия. При резке даже углеродистых сталей во многих случаях она более экономична, чем газокислородная, ввиду высокой скорости и лучшего качества реза [4].
В зависимости от металла в качестве плазмообразующих газов можно использовать азот, водород, аргоно-водородные, аргоно-азотные, азото-водородные смеси. Использование для резки смесей газов, содержащих двухатомные газы, энергетически более эффективно. Диссоциируя, двухатомный газ поглощает много теплоты, которая выделяется на холодной поверхности реза при объединении свободных атомов в молекулу. В последнее время, когда появилась возможность использовать водоохлаждаемые циркониевые и гафниевые электроды, в качестве режущего газа стали использовать и воздух. Сварку и резку можно выполнять вручную и автоматически.
5 Возможности плазменной сваркиПлазменным напылением наносятся износостойкие, антифрикционные, жаростойкие, коррозионностойкие и другие покрытия.
Напыление с помощью низкотемпературной плазмы позволяет:
- наносить покрытия на листовые материалы, на конструкции больших размеров, изделий сложной формы;
- покрывать изделия из самых разнообразных материалов, включая материалы, не терпящие термообработки в печи (стекло, фарфор, дерево, ткань);
- обеспечить равномерное покрытие как на большой площади, так и на ограниченных участках больших изделий;
- значительно увеличить размеры детали (восстановление и ремонт изношенных деталей). Этим методом можно наносить слои толщиной в несколько миллиметров;
- легко механизировать и автоматизировать процесс напыления;
- использовать различные материалы: металлы, сплавы, окислы, карбиды, нитриды, бориды, пластмассы и их различные комбинации; наносить их в несколько слоев, получая покрытия со специальными характеристиками;
- практически избежать деформации основы, на которую производится напыление;
- обеспечить высокую производительность нанесения покрытия при относительно небольшой трудоёмкости;
- улучшить качество покрытий. Они получаются более равномерными, стабильными, высокой плотности и с хорошим сцеплением с поверхностью детали.
Впервые твердосплавные пластины с покрытием из карбидов титана (TiC) появились на мировом рынке в 1969 г. К настоящему времени более 50% всех твердосплавных пластин, выпускаемых западными фирмами, имеют покрытия на основе таких соединений, как карбид титана TiC, нитрид титана TiN, оксид алюминия Al2O3 и др. В отечественной промышленности широкое применение нашли установки плазменного напыления типа «Булат», «УВМ», «Пуск», позволяющие наносить на инструмент одно- и многослойные покрытия.[3]
5 Микроплазменная сваркаДля соединения тонких деталей от 0,3 до 2 мм толщиной, ремонта медицинских инструментов, подходит микроплазменная сварка. Она проводится на малом токе с 0,1 до 2 А, толщина вольфрамового электрода не превышает 2 мм, диаметр сопла горелки – от 0,5 до 1,5 мм.
Нахлесточные и тавровые соединения таким методом делать не стоит, а торцовые выполняются в любом положении, для них не нужна присадочная проволока. Под стыковые швы делают подкладку. Для работы нужны малоамперные инверторы, выпрямители, генерирующие стабильный ток для поддержки дежурной дуги. Среди промышленного оборудования ручной, автоматической микроплазменной сварки есть модели, имеющие разные режимы работы:
импульсный прямой или обратной полярности;
разно-полярно импульсный;
прямой и обратной непрерывной полярности.
При соединении тонких деталей этим методом снижается риск прожога и тепловой деформации детали за счет узкой зоны разогрева. Фольгу варят только плазмой, другие методы не применяются.
Отличительные особенности микроплазменного шва:
устойчивость к вибрациям и ударам из-за однородности молекулярного строения;
гладкая поверхность, не требующая дополнительной обработки;
высокая точность, благодаря сфокусированной дуге, удается минимизировать отклонения, так как сварочную ванну в процессе образования шва легко регулировать;
хорошее сцепление кромок при неглубоком проваре.
Оборудование для микроплазмы мобильное, с вмонтированной емкостью для газа, автоматическая подача присадки повышает комфортность проведения работ [5].
ЗАКЛЮЧЕНИЕПлазменная сварка – одно из перспективных направлений работ. Она применима для цветных сплавов, алюминия. Удобна во время монтажа тепловых систем в частных домах и для работы с электроникой. Самым удобным считается микроплазменное оборудование.
Плазменная сварка имеет следующие области применения.
Для соединения металлов однородной и разнородной структуры, листов, микродеталей, проводников, титановых сплавов, чугуна, алюминия и медных шин.
С целью наплавки и нанесения покрытий расплавлением дополнительной присадочной проволоки.
Для устранения дефектов литья.
Вырезание отверстий и разделительная резка – еще несколько дополнительных возможностей.
Для обработки краев и пайки.
Принцип действия аппаратов заключается в продуцировании потока дуги, которая расплавляет металл при предельно высоких температурах (до + 300000С). Газ нагревается, ионизируется, вдувается в камеру и сжимает образованный столб, благодаря чему увеличивается мощность и, как следствие, запускается высокоэффективный сварочный процесс.
Список используемых источников
1. Ширшов, И.Г. Плазменная резка / И. Г. Ширшов, В. Н. Котиков. - Л. : Машиностроение : Ленингр. отд-ние, 1987. - 192 с.
2. Паркин, А.А. Технология обработки концентрированными потоками энергии: Учеб. пособие для вузов. / А.А. Паркин – Самара: СамГТУ, 2005. – 496 с.
3. Николаев Г. А. Сварка в машиностроении: Справочник в 4-х т. - М.: Машиностроение, 1978.
4. Пузряков, А. Ф. Теоретические основы технологии плазменного напыления : учебное пособие по курсу "Технология конструкций из металло-композитов" / Пузряков А. Ф. - Москва : Издательство МГТУ им. Н. Э. Баумана, 2008. - 360 с.
5. Достанко А.П. Плазменная металлизация в вакууме / А. П. Достанко, С. В. Грушецкий, Л. И. Киселевский и др. - Минск : Наука и техника, 1983. - 279 с.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнить курсовой по Транспортной логистике. С-07082
Курсовая, Транспортная логистика
Срок сдачи к 14 дек.
Роль волонтеров в мероприятиях туристской направленности
Курсовая, Координация работы служб туризма и гостеприимства
Срок сдачи к 13 дек.
Контрольная работа
Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления
Срок сдачи к 30 дек.
Написать курсовую по теме: Нематериальные активы и их роль в деятельности предприятия.
Курсовая, Экономика организации
Срок сдачи к 14 дек.
написать доклад на тему: Процесс планирования персонала проекта.
Доклад, Управение проектами
Срок сдачи к 13 дек.
Заполните форму и узнайте цену на индивидуальную работу!