это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
2742321
Ознакомительный фрагмент работы:
Введение
Основным источником энергии для всех живых существ, населяющих нашу планету, служит энергия солнечного света, которую используют непосредственно только клетки зеленых растений, водорослей, зеленых и пурпурных бактерий. В этих клетках из углекислого газа и воды в процессе фотосинтеза образуются органические вещества (углеводы, жиры, белки, нуклеиновые кислоты и др.). Поедая растения, животные получают органические вещества в готовом виде. Энергия, запасенная в этих веществах, переходит вместе с ними в клетки гетеротрофных организмов.
В клетках животных организмов энергия органических соединений при их окислении превращается в энергию АТФ. (Углекислый газ и вода, выделяющиеся при этом, вновь используются автотрофными организмами для процессов фотосинтеза.) За счет энергии АТФ осуществляются все процессы жизнедеятельности: биосинтез органических соединений, движение, рост, деление клеток и др.
Тема по образованию и использованию АТФ в организме давно не нова, но редко, где встретишь полное рассмотрение того и другого в одном источнике и еще реже анализ сразу обоих этих процессов и в разных организмах.
В связи с этим, актуальностью нашей работы стало тщательное изучение образования и использования АТФ в живых организмах, т.к. данная тема не изучается на должном уровне в научно-популярной литературе.
Пути образования АТФ
В организме АТФ синтезируется путём фосфорилирования АДФ:
АДФ + H3PO4 + энергия > АТФ + H2O.
Фосфорилирование АДФ возможно двумя способами: субстратное фосфорилирование и окислительное фосфорилирование (используя энергию окисляющихся веществ). Основная масса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования H-зависимой АТФ-синтазой. Субстратное фосфорилирование АТФ не требует участия мембранных ферментов, оно происходит в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений.
Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена.
В организме АТФ является одним из самых часто обновляемых веществ. Так у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000-3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ .Синтез АТФ у бактерий осуществляется тремя путями : Брожение ( в результате у разных бактерий , наряду с АТФ , образуются органические кислоты – молочная , пропионовая , муравьиная , маслянная , уксусная , янтарная и другие соединения ).
Фосфорилирование АДФ возможно двумя способами: субстратное фосфорилирование и окислительное фосфорилирование (используя энергию окисляющихся веществ). Основная масса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования H-зависимой АТФ-синтазой. Субстратное фосфорилирование АТФ не требует участия мембранных ферментов, оно происходит в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений.
Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена .В организме АТФ является одним из самых часто обновляемых веществ. Так у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000-3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ .Метаболизм глюкозы в анаэробных условиях
В анаэробных условиях распад глюкозы до пирувата происходит аналогично, как и в аэробных условиях.
Судьба пирувата, образуемого при гликолизе, зависит от наличия или отсутствия кислорода. В анаэробных условиях в результате одиннадцатой реакции происходит восстановление пировиноградной кислоты в молочную кислоту (лактат). Реакция протекает при участии фермента лактатдегидрогеназы и кофермента НАДН+Н+, образованного при окислении глицеральдегид-3-фосфата в 1,3-бисфосфоглицериновую кислоту. Образование лактата позволяет регенерировать НАД+, который затем снова используется в реакции, катализируемой глицеральдегид-3-фосфатдегидрогеназой.
В гликолизе выделяют центральную окислительно-восстановительную реакцию гликолиза (гликолитическую оксидоредукцию), которая состоит в окислении глицеральдегид-3-фосфата с образованием НАДН+Н+ и последующим переносом атомов водорода от НАДН+Н+ на пируват.
Значение гликолиза велико в тканях и органах, где ограничен доступ кислорода или возможно внезапное и резкое возрастание скорости потребления АТФ. Например, в работающей сердечной мышце скорость потребления АТФ может возрасти в несколько раз, а в работающей скелетной мышце – в несколько десятков раз. Когда аэробных возможностей для обеспечения повышенной потребности в АТФ становится недостаточно, дополнительное количество АТФ будет черпаться из гликолиза.
Гликолиз до лактата происходит только в анаэробных условияхив клетках,лишенных митохондрий (эритроциты).
Энергетическая эффективность гликолиза в анаэробных условиях составляет 2 молекулы АТФ на одну молекулу глюкозы.
Анаэробному расщеплению могут подвергаться глюкозные остатки, отщепленные от концов цепей гликогена фосфоролитическим путем – гликогенолиз. Включение гликогена в процесс анаэробного распада осуществляется с помощью трех ферментов: 1) гликоген-фосфорилаза катализирует расщепление концевых α-1,4-гликозидных связей с выделением глюкозо-1-фосфата; 2) дебраншинг фермент катализирует расщепление α-1,6-гликозидных связей с выделением глюкозо-1-фосфата; 3) фосфоглюкомутаза катализирует превращение глюкозо-1-фосфата в глюкозо-6-фосфат. Поскольку при гликогенолизе на образование глюкозо-6-фосфата АТФ не тратится, в процессе гликогенолиза накапливаются не две, а три молекулы АТФ на каждый отделенный глюкозный остаток. Однако это не означает, что гликогенолиз энергетически более выгоден, чем гликолиз, так как на синтез гликогена из глюкозы также расходуется АТФ.
Образование АТФ в ходе гликолиза
Образование АТФ возможно в ходе гликолиза, цикла трикарбоновых кислот или цикла Кребса. Такие процессы носят название субстратного фосфорилирования.
В ходе первого получают четыре молекулы АТФ, две молекулы пирувата или пировиноградной кислоты из глюкозы. Это бескислородное расщепление. На обеспечение данного процесса затрачивается 2 АТФ, протекает он в цитоплазме или цитозоле. Цикл лимонной кислоты происходит на кристах (складки внутренней оболочки) митохондрий в ходе окисления пирувата. При этом происходит отщепление одного атома углерода с образованием ацетилкоэнзима А и восстановление НАДН. Далее синтезируется лимонная кислота при участии щавелевоуксусной кислоты. Цитрат превращается в цис-аконитат, который переходит в изоцитрат. К последнему присоединяется окисленный НАДН, который восстанавливается. Отщепление водорода приводит к синтезу кетоглутарата, с ним снова соединяется окисленный НАДН и ацетилкоэнзим А. На этой стадии синтезируется сукцинил-коэнзим А, к которому присоединяется ГДФ (гуанозиндифосфат). Данная молекула восстанавливается в ГТФ (гуанозинтрифосфат) плюс образуется сукцинат. Он превращается в фумарат, затем малат. В этой реакции синтезируется оксалоацетат и восстановленный НАДН. Так, цикл Кребса возвращается к цитрату. На каждый цикл затрачиваются 2 молекулы АТФ, синтезируется 6 НАДН в цикле и 4 на подготовительных этапах. Последняя энергетически приравнивается к трем молекулам АТФ. В синтезе цитрата задействованы также два ФАДН2 (флавинадениндинуклеотид), на каждую приходится по две АТФ. Таким образом, синтезируемое количество АТФ соответствует 38 молекулам с позиций биологии и биохимии. Однако следует помнить, что это теоретическое число, необходимое для дыхания клетки. Все реакции цикла Кребса катализируются ферментами.
Другим важнейшим анаэробным механизмом ресинтеза АТФ является гликолиз. Гликолизом называют начальный этап расщепления углеводов (гликогена и глюкозы), завершающийся образованием пировиноградной или молочной кислоты. При адекватном потребностям снабжении организма кислородом пировиноградная кислота подвергается дальнейшим превращениям с его участием, приводящим к образованию конечных продуктов обмена: СО2 и Н2О. В условиях напряженной мышечной деятельности, когда имеет место неадекватное потребностям снабжение организма кислородом, могут значительно усиливаться анаэробные превращения углеводов, завершающиеся образованием молочной кислоты. В силу этого анаэробный гликолиз, приводящий к накоплению молочной кислоты, можно рассматривать как самостоятельный процесс ресинтеза АТФ.
В цепи реакций гликолиза есть две окислительные стадии, сопряженные с накоплением энергии в молекулах АТФ. Связанное с этими стадиями образование АТФ не только покрывает расход энергии (в виде АТФ) на начальных этапах гликолиза, но и образует дополнительное количество АТФ, используемое на выполнение работы.
Энергетическая эффективность гликолиза невысока. Расщепление 1 моля глюкозы до молочной кислоты сопровождается ресинтезом 2 молей АТФ. Для сравнения укажем, что расщепление 1 моля глюкозы в аэробных превращениях до образования конечных продуктов обмена (СО2 и Н2О) обеспечивает ресинтез 38 молей АТФ.
Анаэробное расщепление гликогена характеризуется большей энергетической эффективностью, чем расщепление глюкозы. Выход АТФ в этом случае составляет 3 моля АТФ на моль глюкозных остатков гликогена. Более высокая энергетическая эффективность анаэробного расщепления гликогена связана с тем, что он является более энергоемким веществом, чем глюкоза, и начальное его фосфорилирование осуществляется в реакции со свободной фосфорной кислотой, тогда как для начального фосфорилирования глюкозы требуются затраты АТФ.Ферментные системы гликолиза локализованы на мембранах цитоплазматической сети (в мышечных волокнах – на мембранах саркоплазматического ретикулума). Сам же процесс гликолиза протекает в цитоплазме (саркоплазме) мышечных клеток.
Гликолиз уступает креатинфосфокиназной реакции по скорости развертывания и по развиваемой максимальной мощности. Скорость развертывания гликолиза связана с интенсивностью выполняемого упражнения и зависит от тренированности спортсмена. У тренированных спортсменов гликолиз достигает максимальной мощности через 20-40 сек после начала интенсивного упражнения.
Максимальная мощность гликолиза приблизительно в 1,5 раза ниже мощности креатинфосфокиназной реакции, но в 1,5-3 раза выше мощности аэробного процесса. У тренированных спортсменов она может достигать 750 кал/(кг.мин).
Скорость развертывания и максимальная мощность гликолиза в первую очередь определяется количеством и активностью его ключевого фермента – фосфофруктокиназы. Под влиянием систематической тренировки, связанной с использованием упражнений, в энергообеспечении которых участвует гликолиз, оба эти параметра (мощность и скорость развертывания) претерпевают значительные изменения. То есть, происходит более быстрое развертывание и повышается мощность гликолиза.
Гликолиз имеет значительное превосходство перед креатинфосфатной реакцией по метаболической емкости. Прямые измерения метаболической емкости гликолиза невозможны, т.к. гликолиз обеспечивает энергией работу только в комплексе с другими энергопреобразующими процессами: креатинфосфокиназной реакцией и аэробным окислением. По расчетам итальянского исследователя Р. Маргариа у тренированного спортсмена гликолиз мог бы обеспечить работу субмаксимальной (ниже максимальной) интенсивности в течении 40 сек при условии выключения из работы других процессов, обеспечивающих энергией мышечную деятельность.
Функции АТФ
Важнейшая функция – участие в энергетическом обмене. Энергия, выделяемая в ходе данных превращений, вновь идет на синтез АТФ. При этом 40% рассеивается в виде тепла.
Поскольку для поддержания любых процессов жизнедеятельности необходимы энергозатраты АТФ – аккумулятор клетки, универсальный источник запасов энергии. Гликолиз активно протекает при физической нагрузке, в мышцах. Субстратное фосфорилирование также осуществляется из креатинфосфата других органических веществ.
Важно подчеркнуть, что цикл Кребса протекает при расщеплении как углеводов, так и белков и жиров. Если в качестве «топлива» клетка использует не углевод, гликолиз не протекает (отсюда не происходит затрата двух молекул АТФ с образованием четырех). Но цикл трикарбоновых кислот протекает одинаково, так как главную роль там играет ацетил-коэнзим А.
Энергообеспечение биохимических процессов. Все биохимические реакции в клетках, для которых необходимы траты энергии, получают её с помощью АТФ.
Является медиатором, т.е. передает сигнал синапсам. Синапс — место соприкосновения двух клеточных мембран.
Регуляция биохимических процессов. АТФ входит в состав ферментов и может замедлять или ускорять протекание реакций.
Участие в синтезе АМФ и АДФ. К рибозе в строении АТФ могут присоединиться до трёх остатков фосфорной кислоты. Если их менее трёх, то образуются следующие вещества: АМФ (аденозин-монофосфат) при одном остатке фосфорной кислоты и АДФ (аденозин-дифосфат) при двух.
Участие в синтезе нуклеиновых кислот. Использование АТФ, вместе с другими нуклеотидтрифосфатами, как поставщиков азотистых оснований для строительства нуклеиновых кислот.
Синтез АТФ протекает в митохондриях в три этапа:
Подготовительный. Распад сложных органических веществ под действием пищеварительных ферментов, выделение энергии в виде тепла.
Гликолиз. Без кислорода. Расщепление глюкозы с помощью ферментов.
Гидролиз. С участием кислорода. Расщепление молочной кислоты с помощью ферментов. На этом этапе запускается цепь химических реакций с водородом. Их конечный результат — синтез АТФ.
Заключение
АТФ - это особое соединение, содержащее связи, при гидролизе которых высвобождается огромное количество энергии. Называя синтезом АТФ процесс, выполняющий функцию поддержания жизнедеятельности клетки, нельзя не понять, каково значение этого явления. В действительности количество синтезируемого аденозинтрифосфата может быть меньше 38 молекул. Суть процесса заключается в синтезе макроэргических веществ, поступающих в дыхательную цепь переноса электронов.
Анаэробные бактерии – это микроорганизмы, которые развиваются вне зависимости от присутствия в питательной среде кислорода. Они получают энергию путем субстратного фосфорилирования.
Наиболее значимыми аэробами являются бактероиды. Примерно пятьдесят процентов всех гнойно-воспалительных процессов, возбудителями которых могут быть анаэробные бактерии, приходится на бактероиды.
Бактероиды – это род граммотрицательных облигатных анаэробных бактерий. Это палочки с биполярной окрашиваемостью, размер которых не превышает 0,5-1,5 на 15 мкм. Вырабатывают токсины и ферменты, которые могут вызывать вирулентность. Различные бактероиды обладают разной устойчивостью к антибиотикам: встречаются как устойчивые, так и чувствительные к антибиотикам.
К возникновению инфекций приводят все процессы, во время которых на ткани попадают активные анаэробные бактерии. Также развитие инфекций могут вызвать нарушенное кровоснабжение и некроз тканей (различные травмы, опухоли, отеки, болезни сосудов). Инфекции ротовой полости, укусы животных, легочные заболевания, воспалительные заболевания тазовых органов и многие другие заболевания также могут быть вызваны именно анаэробами.
В разных организмах инфекция развивается по-разному. На это влияет и вид возбудителя, и состояние здоровья человека. Из-за трудностей, связанных с диагностированием анаэробных инфекций, заключение часто основывается на предположениях. Отличаются некоторыми особенностями инфекции, вызванные неклостридиальными анаэробами.
Первыми признаками заражения тканей аэробами являются нагноения, тромбофлебиты, газообразование. Некоторые опухоли и новообразования (кишечные, маточные и другие) также сопровождаются развитием анаэробных микроорганизмов. При анаэробных инфекциях может появляться неприятный запах, однако, его отсутствие не исключает анаэробов в качестве возбудителя инфекции.
Список литературы
1.«Медицинская микробиология, иммунология и вирусология» А.И. Коротяев, С.А. Бабичев. Учебник для медицинских вузов.
2.Лекции по микробиологии http://bsmy.ru/1593
3. http://bibliofond.ru
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Требуется разобрать ст. 135 Налогового кодекса по составу напогового...
Решение задач, Налоговое право
Срок сдачи к 5 дек.
Школьный кабинет химии и его роль в химико-образовательном процессе
Курсовая, Методика преподавания химии
Срок сдачи к 26 дек.
Реферат по теме «общественное мнение как объект манипулятивного воздействий. интерпретация общественного мнения по п. бурдьё»
Реферат, Социология
Срок сдачи к 9 дек.
Выполнить курсовую работу. Образовательные стандарты и программы. Е-01220
Курсовая, Английский язык
Срок сдачи к 10 дек.
Изложение темы: экзистенциализм. основные идеи с. кьеркегора.
Реферат, Философия
Срок сдачи к 12 дек.
Заполните форму и узнайте цену на индивидуальную работу!