Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Понятие и виды компьютерной графики

Тип Курсовая
Предмет Компьтерная графика

ID (номер) заказа
3203051

500 руб.

Просмотров
1484
Размер файла
416.49 Кб
Поделиться

Ознакомительный фрагмент работы:

ВВЕДЕНИЕ. Визуализация – это естественная, исходная база развития человека, начиная с раннего детства. Поэтому пространственное воображение является фундаментальной компонентой профессиональной деятельности не только в технике, архитектуре, но и в науке, бизнесе и банковском деле.
Увеличивается роль компьютерной геометрической и графической подготовки в образовательной сфере, расширяется предметная область иллюстративной и деловой графики с учетом общей тенденции к визуализации любой информации.
С другой стороны конкуренция охватывает все виды человеческой деятельности, как профессиональную, так и сферу бизнеса. На передний план выступает увеличение заметности передаваемой информации. Визуальный канал занимает особое место в коммуникационной системе.
Компьютерная графика представляет собой одну из современных технологий создания различных изображений с помощью аппаратных и программных средств компьютера, отображения их на экране монитора и затем сохранения в файле или печати на принтере.
Без компьютерной графики невозможно представить себе не только компьютерный, но и обычный, вполне материальный мир. Визуализация данных находит применение в самых разных сферах человеческой деятельности. Например, назовем медицину (компьютерная томография), научные исследования (визуализация строения вещества, векторных полей и других данных), моделирование тканей и одежды, опытно-конструкторские разработки.
В зависимости от способа формирования изображений компьютерную графику принято подразделять на растровую, векторную и фрактальную.
Отдельным предметом считается трехмерная (3D) графика, изучающая приемы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.
Особенности цветового охвата характеризуют такие понятия, как черно-белая и цветная графика. На специализацию в отдельных областях указывают названия некоторых разделов: инженерная графика, научная графика, Web-графика, компьютерная полиграфия и прочие.
1 ПОНЯТИЕ И ВИДЫ КОМПЬЮТЕРНОЙ ГРАФИКИКомпьютерная графика – раздел информатики, занимающийся проблемами создания и обработки на компьютере графических изображений.
Само понятие компьютерной графики включает в себя следующие основные понятия:
•Разрешение экрана. Это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (зависит от настроек Windows). Измеряется в пикселах и определяет размер изображения, которое может поместиться на экране целиком.
•Разрешение принтера. Это свойство принтера, выражающее количество отдельных точек, которые могут быть напечатаны на участке единичной длины. Измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере.
•Разрешение изображения. Это свойство самого изображения. Измеряется также в точках на дюйм и задается при создании изображения в графическом редакторе или с помощью сканера. Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения – его физическим размером.
•Физический размер изображения может измеряться как в пикселах, так и в единицах длины. Он создается при создании изображения и хранится вместе с файлом.
•Цветовое разрешение. Определяет метод кодирования цветовой и информации, и от него зависит то, сколько цветов на экране может отображаться одновременно.
•Цветовая модель. Это способ разделения цветового оттенка на составляющие компоненты. Существует много различных типов цветовых моделей, но в компьютерной графике, как правило, применяется не более трех (RGB, CMYK, HSB).
•Цветовая палитра. Это таблица данных, в которой хранится информация о том, каким кодом закодирован тот или иной цвет. Самый удобный для компьютера способ кодирования цвета – 24-разрядный, True Color.
Приложения компьютерной графики очень разнообразны. Для каждого направления создается специальное программное обеспечение, которое называется графическими программами, или графическим пакетом.
Основные направления:
•Научная графика. Назначение – визуализация объектов научных исследований, графическая обработка результатов расчетов; проведение вычислительных экспериментов с наглядным представлением их результатов.
•Деловая графика. Предназначена для создания иллюстраций, часто используемых в работе различных учреждений.
•Конструкторская графика (САПР).
•Иллюстративная графика. Простейшие программные средства иллюстративной графики называются графическими редакторами.
•Художественная и рекламная графика.
•Компьютерная анимация – получение движущихся изображений на дисплее.
Несмотря на то, что для работы с компьютерной графикой существует множество классов программного обеспечения, различают всего три вида компьютерной графики:
•Растровая.
•Векторная.
•Фрактальная. Часто используется в развлекательных программах.
1.1 Фрактальная графикаМатематической основой фрактальной графики является фрактальная геометрия. Здесь в основу метода построения изображений положен принцип наследования от, так называемых, «родителей» геометрических свойств объектов-наследников.
Понятия фрактал, фрактальная геометрия и фрактальная графика, появившиеся в конце 70-х, сегодня прочно вошли в обиход математиков и компьютерных художников. Слово фрактал образовано от латинского fractus и в переводе означает «состоящий из фрагментов». Оно было предложено математиком Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался.
Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому. Одним из основных свойств фракталов является самоподобие. Объект называют самоподобным, когда увеличенные части объекта походят на сам объект и друг на друга. Перефразируя это определение, можно сказать, что в простейшем случае небольшая часть фрактала содержит информацию обо всем фрактале.
В центре фрактальной фигуры находится её простейший элемент — равносторонний треугольник, который получил название «фрактальный». Затем, на среднем отрезке сторон строятся равносторонние треугольники со стороной, равной (1/3a) от стороны исходного фрактального треугольника. В свою очередь, на средних отрезках сторон полученных треугольников, являющихся объектами-наследниками первого поколения, выстраиваются треугольники-наследники второго поколения со стороной (1/9а) от стороны исходного треугольника. Таким образом, мелкие элементы фрактального объекта повторяют свойства всего объекта. Полученный объект носит название «фрактальной фигуры». Процесс наследования можно продолжать до бесконечности. Таким образом, можно описать и такой графический элемент, как прямую.
Изменяя и комбинируя окраску фрактальных фигур, можно моделировать образы живой и неживой природы (например, ветви дерева или снежинки), а также, составлять из полученных фигур «фрактальную композицию». Фрактальная графика, также как векторная и трёхмерная, является вычисляемой. Её главное отличие в том, что изображение строится по уравнению или системе уравнений. Поэтому в памяти компьютера для выполнения всех вычислений, ничего кроме формулы хранить не требуется.
Только изменив коэффициенты уравнения, можно получить совершенно другое изображение. Эта идея нашла использование в компьютерной графике благодаря компактности математического аппарата, необходимого для ее реализации. Так, с помощью нескольких математических коэффициентов можно задать линии и поверхности очень сложной формы.
Итак, базовым понятием для фрактальной компьютерной графики являются «Фрактальный треугольник». Затем идет «Фрактальная фигура», «Фрактальный объект»; «Фрактальная прямая»; «Фрактальная композиция»; «Объект-родитель» и «Объект наследник». Следует обратить Ваше внимание на то, что фрактальная компьютерная графика, как вид компьютерной графики двадцать первого века получила широкое распространение не так давно.
Её возможности трудно переоценить. Фрактальная компьютерная графика позволяет создавать абстрактные композиции, где можно реализовать такие композиционные приёмы как, горизонтали и вертикали, диагональные направления, симметрию и асимметрию и др. Сегодня немногие компьютерщики в нашей стране и за рубежом знают фрактальную графику. С чем можно сравнить фрактальное изображение?
Ну, например, со сложной структурой кристалла, со снежинкой, элементы которой выстраивается в одну сложную структуру. Это свойство фрактального объекта может быть удачно использовано при составлении декоративной композиции или для создания орнамент. Сегодня разработаны алгоритмы синтеза коэффициентов фрактала, позволяющего воспроизвести копию любой картинки сколь угодно близкой к исходному оригиналу.
С точки зрения машинной графики фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически благодаря фрактальной графике найден способ эффективной реализации сложных неевклидовых объектов, образы которых весьма похожи на природные. Геометрические фракталы на экране компьютера — это узоры, построенные самим компьютером по заданной программе. Помимо фрактальной живописи существуют фрактальная анимация и фрактальная музыка.
Создатель фракталов — это художник, скульптор, фотограф, изобретатель и ученый в одном лице. Вы сами задаете форму рисунка математической формулой, исследуете сходимость процесса, варьируя его параметры, выбираете вид изображения и палитру цветов, то есть творите рисунок «с нуля». В этом одно из отличий фрактальных графических редакторов (и в частности — Painter) от прочих графических программ.
Например, в Adobe Photoshop изображение, как правило, «с нуля» не создается, а только обрабатывается. Другой самобытной особенностью фрактального графического редактора Painter (как и прочих фрактальных программ, например Art Dabbler) является то, что реальный художник, работающий без компьютера, никогда не достигнет с помощью кисти, карандаша и пера тех возможностей, которые заложены в Painter программистами.
1.2 Трехмерная графикаТрехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов. В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования – создание подвижного изображения реального физического тела.
В упрощенном виде для пространственного моделирования объекта требуется:
•спроектировать и создать виртуальный каркас (“скелет”) объекта, наиболее полно соответствующий его реальной форме;
•спроектировать и создать виртуальные материалы, по физическим свойствам визуализации похожие на реальные;
•присвоить материалы различным частям поверхности объекта (на профессиональном жаргоне – “спроектировать текстуры на объект”);
•настроить физические параметры пространства, в котором будет действовать объект, – задать освещение, гравитацию, свойства атмосферы, свойства взаимодействующих объектов и поверхностей;
•задать траектории движения объектов;
•рассчитать результирующую последовательность кадров;
•наложить поверхностные эффекты на итоговый анимационный ролик.
Для создания реалистичной модели объекта используют геометрические примитивы (прямоугольник, куб, шар, конус и прочие) и гладкие, так называемые сплайновые поверхности. В последнем случае применяют чаще всего метод бикубических рациональных В-сплайнов на неравномерной сетке (NURBS). Вид поверхности при этом определяется расположенной в пространстве сеткой опорных точек. Каждой точке присваивается коэффициент, величина которого определяет степень ее влияния на часть поверхности, проходящей вблизи точки. От взаимного расположения точек и величины коэффициентов зависит форма и “гладкость” поверхности в целом.
После формирования “скелета” объекта необходимо покрыть его поверхность материалами. Все многообразие свойств в компьютерном моделировании сводится к визуализации поверхности, то есть к расчету коэффициента прозрачности поверхности и угла преломления лучей света на границе материала и окружающего пространства.
Закраска поверхностей осуществляется методами Гуро (Gouraud) или Фанга (Phong). В первом случае цвет примитива рассчитывается лишь в его вершинах, а затем линейно интерполируется по поверхности. Во втором случае строится нормаль к объекту в целом, ее вектор интерполируется по поверхности составляющих примитивов и освещение рассчитывается для каждой точки.
Свет, уходящий с поверхности в конкретной точке в сторону наблюдателя, представляет собой сумму компонентов, умноженных на коэффициент, связанный с материалом и цветом поверхности в данной точке. К таковым компонентам относятся:
•свет, пришедший с обратной стороны поверхности, то есть преломлен¬ный свет (Refracted);
•свет, равномерно рассеиваемый поверхностью (Diffuse);
•зеркально отраженный свет (Reflected);
•блики, то есть отраженный свет источников (Specular);
•собственное свечение поверхности (Self Illumination).
Следующим этапом является наложение (“проектирование”) текстур на определенные участки каркаса объекта. При этом необходимо учитывать их взаимное влияние на границах примитивов. Проектирование материа¬лов на объект – задача трудно формализуемая, она сродни художествен¬ному процессу и требует от исполнителя хотя бы минимальных творческих способностей.
После завершения конструирования и визуализации объекта приступают к его “оживлению”, то есть заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах. В первом кадре объект выставляется в исходное положение. Через определенный промежуток (например, в восьмом кадре) задается новое положение объекта и так далее до конечного положения. Промежуточные значения вычисляет программа по специальному алгоритму. При этом происходит не просто линейная аппроксимация, а плавное изменение положения опорных точек объекта в соответствии с заданными условиями.
Эти условия определяются иерархией объектов, (есть законами их взаимодействия между собой), разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей. Такой подход называют методом инверсной кинематики движения. Он хорошо работает при моделировании механических устройств. В случае с имитацией живых объектов используют так называемые скелетные модели. То есть, создается некий каркас, подвижный в точках, характерных для моделируемого объекта. Движения точек просчитываются предыдущим методом. Затем на каркас накладывается оболочка, состоящая из смоделированных поверхностей, для которых каркас является набором контрольных точек, то есть создается каркасная модель. Каркасная модель визуализуется наложением поверхностных текстур с учетом условий освещения. В ходе перемещения объекта получается весьма правдоподобная имитация движений живых существ.
Наиболее совершенный метод анимации заключается в фиксации реальных движений физического объекта. Например, на человеке закрепляют в контрольных точках яркие источники света и снимают заданное движение на видео- или кинопленку. Затем координаты точек по кадрам переводят с пленки в компьютер и присваивают соответствующим опорным точкам каркасной модели. В результате движения имитируемого объекта практически неотличимы от живого прототипа.
Процесс расчета реалистичных изображений называют рендерингом (визуализацией). Большинство современных программ рендеринга основаны на методе обратной трассировки лучей (Backway Ray Tracing). Применение сложных математических моделей позволяет имитировать такие физические эффекты, как взрывы, дождь, огонь, дым, туман1. По завершении рендеринга компьютерную трехмерную анимацию используют либо как самостоятельный продукт, либо в качестве отдельных частей или кадров готового продукта.
Особую область трёхмерного моделирования в режиме реального времени составляют тренажеры технических средств – автомобилей, судов, летательных и космических аппаратов. В них необходимо очень точно реализовывать технические параметры объектов и свойства окружающей физической среды. В более простых вариантах, например при обучении вождению наземных транспортных средств, тренажеры реализуют на персональных компьютерах.
Самые совершенные на сегодняшний день устройства созданы для обучения пилотированию космических кораблей и военных летательных аппаратов. Моделированием и визуализацией объектов в таких тренажерах заняты несколько специализированных графических станций, построенных на мощных RISC-процессорах и скоростных видеоадаптерах с аппаратными ускорителями трехмерной графики. Общее управление системой и просчет сценариев взаимодействия возложены на суперкомпьютер, состоящий из десятков и сотен процессоров. Стоимость таких комплексов выражается девятизначными цифрами, но их применение окупается достаточно быстро, так как обучение на реальных аппаратах в десятки раз дороже.
1.3 Растровая и векторная графикаВекторные изображения (также называемые объектно-ориентированными) определяются математически как векторы — наборы точек, соединенных линиями. Векторы — объекты, описываемые величиной (размером) и направлением (углы, кривизна и так далее). Файлы, в которых хранятся векторные образы, представляют собой списки строк с информацией относительно их расположения, формы, направления, длины, цвета и других данных. Графические элементы векторного файла как раз и называются объектами. Каждый объект представляет из себя самостоятельную систему и обладает всеми свойствами включенными в его описание.
Поскольку каждый объект является самостоятельной системой, его можно перемещать и многократно изменять его свойства, сохраняя при этом первоначальное качество и четкость изображения и не влияя на другие объекты иллюстрации. Эти свойства делают векторные программы (такие как CorelDRAW) очень удобными для иллюстративного и трехмерного моделирования, где в процессе работы часто требуется создавать отдельные объекты и видоизменять их.
Векторные иллюстрации всегда отображаются с максимальным разрешением, которого позволяет достичь устройство вывода (например принтер или монитор). Это означает, что качество их не зависит от разрешения иллюстрации. В результате качество иллюстрации, напечатанной на принтере с разрешением 600 точек на дюйм, будет выше, чем на принтере с разрешением 300 точек на дюйм.
Растровые изображения, также называемые рисованными, состоят из отдельных точек (элементов изображения), именуемых пикселями, которые создают узор за счет различного положения и окраски. При увеличении изображения можно увидеть составляющие его отдельные квадратики. Увеличение размера растрового изображения происходит за счет увеличения каждого элемента, что огрубляет все линии и формы. Однако при большем удалении цвет и форма растрового изображения будут выглядеть сплошными.
В отличие от векторных иллюстраций, работая с растровыми изображениями, можно корректировать мелкие детали, производить значительные изменения и усиливать различные эффекты.
Поскольку каждый элемент изображения имеет собственный цвет, то, изменяя выбранную область по одному элементу, можно создавать фотографические эффекты, такие как затенение и усиление цвета.
Уменьшение размера растрового изображения, как и увеличение, также искажает начальный вид, поскольку для уменьшения общего размера изображения часть его элементов удаляется.
Кроме того, поскольку растровое изображение создано из упорядоченно расставленных точек, нельзя манипулировать его отдельно взятыми частями (то есть перемещать их), не нарушая целостности всего изображения.
2 ПРЕДСТАВЛЕНИЕ ГРАФИЧЕСКИХ ДАННЫХ2.1 Цветовое разрешение и цветовая модельПри работе с цветом используются понятия цветовое разрешение и цветовая модель. Цветовое разрешение определяет метод кодирования цветовой информации, и от него зависит сколько цветов одновременно может отображаться на экране. Для кодирования двухцветного изображения достаточно выделить всего по одному биту на кодирование цвета каждого пиксела. Использование для тех же целей одного байта, позволяет закодировать 256 различных оттенков. Два байта (16 битов) позволяют определить 65536 цветовых оттенков. Этот режим называется High Color. Если же используются три байта (24 бита), возможно одновременное отображение 16,5 млн цветов(!). Этот режим называется True Color.
Большинство цветовых оттенков образуется смешением основных цветов. Значит любой оттенок можно разделить на составляющие его основные цвета. В компьютерной графике применяется несколько таких способов разделения, которые и называются цветовыми моделями.
Мир, окружающий нас, полон всевозможных цветов и цветовых оттенков. С физической точки зрения цвет — это набор определённых длин волн, отражённых от предмета или пропущенных сквозь прозрачный предмет. Однако сейчас нас интересует вопрос не о том, что такое цвет, какова его физическая природа, а то, как вообще на практике можно получит тот или иной цвет. С развитием многих отраслей производства, в том числе, полиграфии, компьютерных технологий, появилась необходимость объективных способов описания и обработки цвета.
Цвета в природе редко являются простыми. Большинство цветов получаются смешением каких-либо других. Например, сочетание красного и синего даёт пурпурный цвет, синего и зелёного — голубой. Таким образом, путём смешения из небольшого количества простых цветов, можно получить множество (и, причём довольно большое) сложных (составных). Поэтому для описания цвета вводится понятие цветовой модели — как способа представления большого количества цветов посредством разложения его на простые составляющие.
Одной из таких моделей — является цветовой круг, о котором уже неоднократно упоминалось ранее. Он представлен на рисунке(См.Приложение А) и называется большим кругом Освальда.
Наряду с кругом Освальда есть еще и круг Гете, в котором основные цвета расположены в углах равностороннего треугольника, а дополнительные — в углах перевернутого треугольника. Схема такого круга представлена на рисунке.(См.Приложение А) Друг напротив друга расположены контрастные цвета.
Возникает естественный вопрос: а зачем всё это надо? Не проще ли было взять и представить в цветовой модели не основные, а все возможные цвета? Конечно, нет. Дать описание каждого цвета в отдельности очень сложно, особенно сейчас, когда на экране монитора мы имеем возможность видеть не сотни, не тысячи, а 4 миллиарда цветов (точнее, цветов и цветовых оттенков). Попробуйте описать каждый цвет в отдельности. Таким образом, цветовые модели — это почти совершенный способ для описания цветов особенно в компьютерных технологиях и полиграфии. Почему же почти? Дело в том, что не любой цвет можно представить в виде комбинации основных. Это является основной проблемой цветовых моделей. Кроме того, излучаемый и поглощаемый цвет описывается по-разному.
Перед тем как перейти к рассмотрению цветовых моделей в отдельности, рассмотрим сначала понятие цветового охвата, который даст нам представление о том, насколько та или иная цветовая модель хорошо представляет цвета.
Определённым цветовым охватом обладают электронно-лучевая трубка монитора или телевизора, цветовые модели, полиграфические краски и, конечно же, глаз человека. На рисунке схематически показано сравнение цветовых охватов человеческого глаза (a), монитора (b) и печатающей машины (c). Цветовой охват монитора соответствует модели RGB, печатающей машины — CMYK.

Рис 1 - сравнение цветовых охватов
Итак, цвет в компьютерных технологиях, в типографии, во многих других отраслях производства, связанных с обработкой изображения, представляется в виде комбинации небольшого количества трёх составных. Такое представление называется цветовой моделью. Различные виды моделей имеют различные цветовые охваты. В этом и заключается их основные преимущества или недостатки. Отражённый и поглощаемый цвет описывается по-разному.
Существует много цветовых моделей, но все они принадлежат к одному из трех типов:
- психологические (по восприятию);
- аддитивные (основанные на сложении);
- субтрактивные (основанные на вычитании).
При обработке изображений при подготовке к печати имеют дело с тремя цветовыми моделями: CIE Lab – психологическое цветовое пространство, RGB – аддитивное цветовое пространство и CMYK – субтрактивное цветовое пространство.
Любое преобразование цвета из одного пространства в другое влечет за собой потерю данных о цвете в изображении.
Аддитивная модель цвета RGB
Данная модель является «естественным языком» цвета для электронных устройств ввода изображения (мониторы, сканеры, цифровые камеры), в которых воспроизведение цвета основано на излучении или пропускании света, а не на его отражении от подложки при создании изображения.
Аддитивной она называется потому, что цвета в ней генерируются суммированием световых потоков. Сумма красного, зеленого и синего цветов максимальной одинаковой интенсивности дает белый цвет.
R – red (красный), G – green (зеленый), B – blue (голубой).

Субтрактивная модель цвета CMYK
В данной модели цвета при смешивании двух или более основных красок дополнительные цвета получаются посредством поглощения одних световых волн спектра белого цвета и отражения других. Так, голубая краска поглощает красный цвет и отражает зеленый и синий, а желтая поглощает синий цвет и отражает красный и зеленый.
В аддитивной модели RGB световые потоки суммируются, производя более яркие цвета, а в субтрактивной модели CMYK световые потоки вычитаются, генерируя более темные цвета. Если учесть светонепроницаемость бумаги, которая скорее отражает свет, чем пропускает его, то становится понятно, почему такие яркие цвета в изображении на мониторе становятся темными и унылыми в отпечатанном виде.
CMYK – cyan (голубой), magenta (пурпур), yellow (желтый), black (черный).
2.2 Форматы графических данныхВ компьютерной графике применяют по меньшей мере три десятка форматов файлов для хранения изображений. Но лишь часть из них стала стандартом “де-факто” и применяется в подавляющем большинстве программ. Как правило, несовместимые форматы имеют файлы растровых, векторных, трехмерных изображений, хотя существуют форматы, позволяющие хранить данные разных классов. Многие приложения ориентированы на собственные “специфические” форматы, перенос их файлов в другие программы вынуждает использовать специальные фильтры или экспортировать изображения в “стандартный” формат.
TIFF (Tagged Image File Format). Формат предназначен для хранения растровых изображений высо¬кого качества (расширение имени файла .TIF). Относится к числу широко распространенных, отличается переносимостью между платформами (IBM PC и Apple Macintosh), обеспечен поддержкой со стороны большинства графических, верстальных и дизайнерских программ. Предусматривает широкий диапазон цветового охвата – от монохромного черно-белого до 32-разрядной модели цветоделения CMYK. Начиная с версии 6.0 в формате TIFF можно хранить сведения о масках (контурах обтравки) изображений. Для уменьшения размера файла применяется встроенный алгоритм сжатия LZW.
PSD (PhotoShop Document). Собственный формат программы Adobe Photoshop (расширение имени файла .PSD), один из наиболее мощных по возможностям хранения растровой графической информации. Позволяет запоминать параметры слоев, каналов, степени прозрачности, множества масок. Поддерживаются 48-разрядное кодирование цвета, цветоделение и различные цветовые модели. Основной недостаток выражен в том, что отсутствие эффективного алгоритма сжатия информации приводит к большому объему файлов.
PCX. Формат появился как формат хранения растровых данных программы PC PaintBrush фирмы Z-Soft и является одним из наиболее распространенных (расширение имени файла .PCX). Отсутствие возможности хранить цветоделенные изображения, недостаточность цветовых моделей и другие ограничения привели к утрате популярности формата. В настоящее время считается устаревшим.
JPEG (Joint Photographic Experts Group). Формат предна¬значен для хранения растровых изображений (расширение имени файла .JPG). Позволяет регулировать соотношение между степенью сжатия файла и качеством изображения. Применяемые методы сжатия основаны на удалении “избыточной” информации, поэтому формат рекомендуют ис-пользовать только для электронных публикаций.
GIF (Graphics Interchange Format). Стандартизирован в 1987 году как средство хранения сжатых изображений с фиксированным (256) количеством цветов (расширение имени файла .GIF). Получил популярность в Интернете благодаря высокой степени сжатия. Последняя версия формата GIF89a позволяет выполнять чересстрочную загрузку изображений и создавать рисунки с прозрачным фоном. Ограниченные возможности по количеству цветов обусловливают его применение исключительно в электронных публикациях.
PNG (Portable Network Graphics). Сравнительно новый (1995 год) формат хранения изображений для их публикации в Интернете (расширение имени файла .PNG). Поддерживаются три типа изображений – цветные с глубиной 8 или 24 бита и черно-белое с градацией 256 оттенков серого. Сжатие информации происходит практически без потерь, предусмотрены 254 уровня альфа-канала, чересстрочная развертка.
WMF (Windows MetaFile). Формат хранения векторных изображений операционной системы Windows (расширение имени файла .WMF). По определению поддерживается всеми приложениями этой системы. Однако отсутствие средств для работы со стандартизированными цветовыми палитрами, принятыми в полиграфии, и другие недостатки ограничивают его применение.
EPS (Encapsulated PostScript). Формат описания как векторных, так и растровых изображений на языке PostScript фирмы Adobe, фактическом стандарте в области допечатных процессов и полиграфии (расширение имени файла .EPS). Так как язык PostScript является универсальным, в файле могут одновременно храниться векторная и растровая графика, шрифты, контуры обтравки (маски), параметры калибровки оборудования, цветовые профили. Для отображения на экране векторного содержимого используется формат WMF, а растрового – TIFF. Но экранная копия лишь в общих чертах отображает реальное изображение, что является существенным недостатком EPS. Действительное изображение можно увидеть лишь на выходе выводного устройства, с помощью специальных программ просмотра или после преобразования файла в формат PDF в приложениях Acrobat Reader, Acrobat Exchange.
PDF (Portable Document Format). Формат описания документов, разра¬ботанный фирмой Adobe (расширение имени файла .PDF). Хотя этот формат в основном предназначен для хранения документа целиком, его впечатляющие возможности позволяют обеспечить эффективное представление изображений. Формат является аппаратно-независимьм, по-этому вывод изображений допустим на любых устройствах – от экрана монитора до фотоэкспонирующего устройства. Мощный алгоритм сжатия со средствами управления итоговым разрешением изображения обеспечи-вает компактность файлов при высоком качестве иллюстраций.
ЗАКЛЮЧЕНИЕ
Подведем итоги:
•Как вам известно, человек принципиально отличается от компьютера тем, что в миллионы и миллиарды раз быстрее обрабатывает видеоинформацию. Именно поэтому для него так важно, чтобы компьютер сообщал об итогах своей работы в графическом виде или в виде рисунков.
•Графическая, информация, видеофрагменты, фотографии все больше и больше становятся основным материалом обработки на компьютере. Для этого служат самые разнообразные программы.
•Программы, позволяющие рисовать, делать несложные схемы и чертежи, выправлять фотографии называются графическими редакторами.
•Графические редакторы разбиваются на два типа. Одни, работающие по принципу аппликации, называются векторными, другие, имитирующие работу с карандашами и кисточками, называются растровыми.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ1.Багриновский К.А., Хрусталев Е.Ю. Новые информационные технологии. - М.: ЭКО. 2004.-370 с.
2.Белинов С.В., Зайцев А.А. Современные информационные технологии. - М.: ИНФРА-М, 2005.-720 с.
3.Веркман К. Товарные знаки: создание, психология, восприятие. - М.: Прогресс,2004.-290 с.
4.Иванченко Н.М. Компьютерные методы обработки информации: УМК. - СПб.: Питер, 2006.-230с.
5.Каpатыгин С.Н. Базы данных: простейшие средства обработки информации; системы управления базами данных. - М.: ABF, 2003.- 250 с.
6.Каpатыгин С.Н. Информационные технологии в коммерческой деятельности. - М.: ABF, 2004.-300 с.
7.Майоров С.И. Информационные технологии. - М.: Информатика, 2003.- 500 с.
8.Макарова Н. В., Матвеева Л. А., Бройдо В. Л. Информатика: Учебник. - М.: Финансы и статистика, 2004.- 650 с.
9.Матвеев Л.А. Информационные системы: поддержка принятия решений: Учебное пособие. -Спб.: Из-во СПбУЭФ, 2005.-350 с.
10.Могилев А.В., Пак Н.И., Хеннер Е.К. Информатика: Учеб. пособие для студ. пед. вузов. - М.: Изд. центр "Академия", 2002. - 816 с.
11.Нельсон Дж. Проблемы дизайна. - М.: Прогресс, 2003.-270 с..
12.Сергеев А.Д. Информатика и математика: учебник для ВУЗов. - м.: Инфра-М., 2007.-470 с.
13.Симонович С.В. и др. Информатика: Базовый курс. - СПб.: Питер, 2006.-400 с14.Шафрин Ю. А. Основы компьютерной технологии. - М.: АБФ, 2005.- 700 с.
15.Экономическая информатика и вычислительная техника:. - М.: Финансы и статистика, 2004. - 336 с.
16.Фрактальная графика. http://artforweb.ru/articles/fraktalnaya_grafika
17.Векторная и растровая графика. http://ru.wikipedia.org/wiki/Векторная_графика
ПРИЛОЖЕНИЕ А27152602139951270635213995-261945214027

Рис 1 - Виды фрактальных изображений
-69844278536

Рис 2 - большой круг Освальда
332964186498

Рис 3 - Круг Гетте


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
54 132 оценки star star star star star
среднее 4.9 из 5
МФПУ «Синергия»
Работа была выполнена ранее положенного срока, Марина очень хорошо и умело дала понять всю...
star star star star star
РЭУ им.Плеханова
Благодарю Евгению за выполнение работы,оценка-отлично.Сделано -все как положено,грамотно и...
star star star star star
ТУСУР
Спасибо автору, всё выполнено быстро и хорошо. На любые вопросы автор отвечает быстро и по...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Составить рисковый проект (проектирование объекта по управлению рисками)

Контрольная, Проектный менеджмент

Срок сдачи к 8 дек.

только что

Решить задачки

Решение задач, Информатика

Срок сдачи к 7 дек.

1 минуту назад
2 минуты назад

Составить иск и отзыв

Контрольная, Литигация

Срок сдачи к 8 дек.

6 минут назад

Конституционные основы статуса иностранцев и лиц без гражданства в России.

Курсовая, Конституционное право

Срок сдачи к 12 дек.

10 минут назад

Физическая культура и спорт в высшем учебном заведении.

Реферат, Физическая культура

Срок сдачи к 6 дек.

10 минут назад

выполнить два задания по информатике

Лабораторная, Информатика

Срок сдачи к 12 дек.

10 минут назад

Решить 5 задач

Решение задач, Схемотехника

Срок сдачи к 24 дек.

12 минут назад

Решите подробно

Решение задач, Физика

Срок сдачи к 7 дек.

12 минут назад

по курсовой сделать презентацию срочно

Презентация, Реклама и PR

Срок сдачи к 5 дек.

12 минут назад
12 минут назад

Описание задания в файле, необходимо выполнить 6 вариант

Курсовая, Схемотехника

Срок сдачи к 20 янв.

12 минут назад
12 минут назад

1 эссе, 2 кейс задачи и 1 контрольная работа

Эссе, Философия

Срок сдачи к 6 дек.

12 минут назад

Нужен реферат на 10 листов

Реферат, Математическое Моделирование Водных Экосистем

Срок сдачи к 11 дек.

12 минут назад

Сделать 2 задания

Решение задач, Базы данных

Срок сдачи к 20 дек.

12 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно
    Введите ваш e-mail
    Файл с работой придёт вам на почту после оплаты заказа
    Успешно!
    Работа доступна для скачивания 🤗.