это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
3656562
Ознакомительный фрагмент работы:
Введение
Актуальность работы. В основных направлениях экономического и социального развития становится задача развивать производство электронных устройств регулирования и телемеханики, исполнительных механизмов, приборов и датчиков систем комплексной автоматизации сложных технологических процессов, агрегатов, машин и оборудования.Опыт, накопленный при создании автоматизированных и автоматических систем управления, показывает, что управление различными процессами основывается на ряде правил и законов, часть из которых оказывается общей для технических устройств, живых организмов и общественных явлений. Изучение процессов управления, получения, преобразования информации в технических, живых и общественных системах составляет предмет кибернетики, важным разделом который является техническая кибернетика, включая анализ информационных процессов управления техническими объектами, синтез алгоритмов управления и создание систем управления, реализующих эти алгоритмы.Техническая кибернетика призвана решать задачи теоретического анализа и развития методов технического конструирования элементной базы систем управления. Выделение этого раздела технической кибернетики в самостоятельную научную дисциплину «Элементы систем автоматического управления и контроля» явилось следствием накопления большого объёма материала, посвященного исследованиям различных устройств автоматики и его систематизации, которая впервые в нашей стране проведена чл.-кор. АН СССР Б.С.Сотсковым.Цель работы – рассмотреть системы управления жизненным циклом продукции.1 Обобщенная структура информационных систем промышленного предприятияТеория автоматического регулирования и управления относится к числу научных дисциплин, образующих в совокупности науку об управлении. В начале она создавалась с целью изучения закономерностей в процессах автоматического управления техническими процессами - производственными, энергетическими, транспортными и т.п. В настоящее время основное значение теория автоматического регулирования и управления имеет для изучения технических процессов, хотя в последние годы её выводами и результатами начинают пользоваться для изучения динамических свойств систем управления не только технического характера.Для осуществления автоматического управления создаётся система, состоящая из управляющего объекта и тесно связанного с ним управляющего устройства. Как и всякое техническое сооружение, систему управления стремятся создать как бы конструктивно жёсткой, динамически «прочной». Эти чисто механические термины довольно условны и употреблены здесь в том смысле, что система должна быть способна выполнять предписанную ей программу действий, несмотря на неизбежные помехи со стороны внешней среды.Впервые, по-видимому, с необходимостью построения регуляторов столкнулись создатели высокоточных механизмов, в первую очередь - часов. Даже небольшие, всё время действующие в них помехи приводили в конечном итоге к отклонениям от нормального хода, недопустимым по условиям точности. Противодействовать этим помехам чисто конструктивными средствами, например, улучшая обработку деталей, повышая их массу или увеличивая развиваемыми устройствами полезные усилия, не удавалось, и для решения проблемы точности в состав системы стали вводить регуляторы. На рубеже нашей эры арабы снабдили поплавковым регулятором уровня водяные часы. Гюйгенс в 1657 году встроил в часы маятниковый регулятор хода.Ещё одной причиной, побуждавшей строить регуляторы, была необходимость управлять процессами, протекавшими при наличии столь сильно изменяющихся помех, в первую очередь нагрузки, что при этом утрачивалась не только точность, но и работоспособность системы. Предвозвестниками регуляторов для подобных условий можно считать применявшиеся ещё в средние века регуляторы хода водяных мукомольных мельниц с центробежными маятниковыми элементами. Хотя отдельные автоматические регуляторы появлялись данные времена, они оставались любопытными для истории техники эпизодами и сколь-нибудь серьёзного влияния на формирование техники и теории автоматического регулирования не оказали. Развитие промышленных регуляторов началось лишь на рубеже XVIII и XIX столетий, в эпоху промышленного переворота в Европе. Первыми промышленными регуляторами этого периода являются автоматический поплавковый регулятор питания котла паровой машины, построенный в 1765 г.И.И.Ползуновым, и центробежный регулятор скорости паровой машины, на который в 1784 г. Получил потент Дж. Уатт. Эти регуляторы как бы открыли путь потоку предложений по принципам регулирования и изобретений регуляторов, продолжавшемуся на протяжении XIX в. В этот период появились регуляторы с воздействием по скорости (Сименса), по нагрузке (Понселе), сервомоторы с жёсткой обратной связью (Фарко), регуляторы с гибкой обратной связью (изодромные), импульсные регуляторы «на отсечку пара», вибрационные электрические регуляторы и т.п.Паровая машина не случайно стала первым объектом для промышленных регуляторов, так как она не обладала способностью устойчиво работать сама по себе, т.е. не обладала «самовыравниванием». Её неприятные динамические особенности часто приводили к неприятным неожиданностям, когда подключённый к машине регулятор действовал не так, как ожидал конструктор: «раскачивал» машину или вообще оказывался неспособным управлять ею. Всё это, естественно, побуждало к проведению теоретических исследований. Публикация этих исследований начинается с 30-х годов (первая известная публикация Д.С.Чижова. была в 1823 году). Однако до конца 60-годов теоретические исследования регуляторов отличаются тем, что сегодня называется «отсутствием системного подхода». Часть авторов ещё не видит, что в технике возникло принципиально новое направление; они считают, что регуляторы - лишь некоторая разновидность, приборное исполнение «модераторов», «уравнителей хода», классическим представителем которых были насаживаемые на вал машины маховики. В некоторых из этих работ считается, что регулятор действует идеально, не обладая собственной инерцией. Шагом вперёд были работы, учитывавшие динамику регулятора, но и в них регулятор рассматривался отдельно от машины. Авторы добивались хорошего «успокоения» колебаний самого регулятора, считая, что это достаточно и для успокоения колебаний машины. При таком подходе теоретические исследования не могли стать фундаментом новой науки и были лишь дополнительными проработками в рамках прикладной механики, придатком к её разделу о паровых машинах.Большое значение для качественного исследования нелинейных систем имеют методы, базирующиеся на представлении переходных процессов траекториями в фазовых плоскости и пространстве. Основы направления были заложены А.А.Андроновым и его школой в 30 - 40-е годы. Метод фазовой плоскости, обладая большой наглядностью и глобальным охватом всех возможных движений, несмотря на ограниченность главным образом уравнениями второго и третьего порядков, вскрыл ряд специфических особенностей процессов в нелинейных системах - наличие предельных циклов, скользящих режимов, захватывание колебаний и т.п. Сочетание фазовых представлений с аналитическими методами дало возможность предложить и исследовать новый важный класс систем с переменной структурой, сохраняющих высокое качество работы в условиях значительных изменений параметра объекта (С.В.Емельянов и др., 60-е годы). Работа в этом направлении удостоена Ленинской премии в 1971 г.Я.З.Цыпкиным были разработаны основы теории релейных (1955) и импульсных (60-е годы) систем с различными видами модуляции. Цикл этих работ удостоен Ленинской премии в 1960 г.Для определения параметров автоколебаний приближенными методами Н.М.Крыловым и Н.Н.Боголюбовым был разработан метод гармонического баланса (1934). Л.С.Гольдфарбом был преложен графо-аналитический метод нахождения частоты и амплитуды основной гармоники автоколебаний с помощью частотных характеристик. Дальнейшее развитие этот метод получил развитие в работах Е.П.Попова и др.Развитие теории автоматического регулирования в послевоенные годы было исключительно интенсивным и многогранным. Даже упомянуть о многих направлениях и авторах в коротком обзоре не представляется возможным. Ограничимся перечислением основных новых разделов, которым посвящены разработки новых фундаментальных принципов управления, выполненные советскими авторами. В трудах Г.В.Щипанова, В.С.Кулебакина, Б.Н.Петрова и других были разработаны теория автоматического регулирования по возмущению, теория компенсации возмущений и инвариантности.В.В.Казакевичем, А.П.Юркевичем, А.А.Фельдбаумом, А.А.Красовским и другими были сформулированы и исследованы принципы экстремального управления и разработана теория экстремальных систем и поиска дуального управления, осуществляющего поиск показателя экстремума качества работы системы. Работами А.А.Фельдбаума, Л.С.Понтрягина, Н.Н.Красовского и многих других созданы теории оптимального управления, в которых исследуются управляющие воздействия, обеспечивающие максимальное значение функционала, выражающего технико-экономическую эффективность динамического процесса управления. Разработка теории экстремальных и оптимальных принципов управления дала основание расширить название курса «Теория автоматического регулирования», назвав его «Теория автоматического регулирования и управления», поскольку рассматриваемые виды управления не ограничиваются только регулированием.Значение теории автоматического управления в настоящее время переросло в рамки непосредственно технических систем. Динамически управляемые процессы имеют место в живых организмах, в экономических и организационных человеко-машинных системах. Законы динамики в них не являются основными и определяющими принципы управления, как это свойственно техническим системам, но тем не менее их влияние зачастую существенно и отказ от их учёта приводит к крупным потерям. В автоматизированных системах управления (АСУ) технологическими процессами роль динамики бесспорна, но она становится всё более очевидной и в других сферах действия АСУ по мере расширения их не только информационных, но и управляющих функций.Целенаправленные процессы, выполняемые человеком для удовлетворения различных потребностей, представляет собой организованную и упорядоченную совокупность действий - операций, которые делятся на два основных вида: рабочие операции и операции управления. К рабочим операциям относятся действия, непосредственно необходимые для выполнения процесса в соответствии с теми природными законами, которыми определяется ход данного процесса, например, снятие стружки в процессе резанья изделия на станке, перемещение экипажа, вращение вала двигателя и т.п. Для облегчения и усовершенствования рабочих операций используются различные технические устройства, частично или полностью заменяющие человека в данной операции. Замена труда человека в рабочих операциях называется механизацией. Цель механизации состоит в высвобождении человека в тяжёлых операциях, требующих больших затрат физической энергии (земляные работы, подъём грузов), во вредных операциях (химические, радиоактивные процессы), в «рутинных» (однообразных, утомительных для нервной системы) операциях (завинчивание однотипных винтов при сборке, заполнение типовых документов, выполнение стандартных вычислений и т.п.).Для правильного и качественного выполнения рабочих операций необходимы сопровождающие их действия другого рода - операции управления, посредством которых обеспечиваются в нужные моменты начало, порядок следования и прекращение рабочих операций, выделяются необходимые для их выполнения ресурсы, придаются нужные параметры самому процессу - направления, скорости, ускорения рабочему инструменту или экипажу; температура, концентрация химическому процессу и т.д. Совокупность управляющих операций образует процесс управления .Операции управления так же частично или полностью могут выполняться техническими устройствами. Замена труда человека в операциях управления называется автоматизацией , а технические устройства, выполняющие операции управления, - автоматическими устройствами . Совокупность технических устройств (машин, орудий труда, средств механизации), выполняющих данный процесс, с точки зрения управления является объектом управления . Совокупность средств управления и объекта образует системы управления. Система, в которой все рабочие и управляющие операции выполняются автоматическими устройствами без участия человека, называются автоматической системой. Система, в которой автоматизирована только часть операций управления, а другая часть (обычно наиболее ответственная) выполняется людьми, называется автоматизированной (или полуавтоматической) системой.Круг объектов и операций управления весьма широк. Он охватывает технологические процессы и агрегаты, группы агрегатов, цехи, предприятия, человеческие коллективы, организации и т.д.Объекты управления и виды воздействия на них.Объекты, в которых протекает управляемый процесс, будем называть объектами управления. Это разнообразные технические устройства и комплексы, технологические или производственные процессы. Состояние объекта можно характеризовать одной или несколькими физическими величинами, называемыми управляемыми или регулируемыми переменными. Для технического устройства, например, электрического генератора, регулируемой переменной может быть напряжение на его выходных клеммах; для производственного участка или цеха - объём выпускаемой им промышленной продукции.2 Классификация систем автоматического управленияСистемы автоматического управления классифицируются по различным признакам.По характеру изменения управляющего воздействия различают системы автоматической стабилизации, программного регулирования и следящие системы.По виду передаваемых сигналов выделяют системы непрерывные, с гармонической модуляцией, импульсные, релейные и цифровые.По способу математического описания, принятого при исследовании, выделяют линейные и нелинейные системы. Обе группы могут быть представлены непрерывными, дискретными и дискретно-непрерывными системами.По виду контролируемых изменений своих свойств различают неприспосабливающиеся и приспосабливающиеся (адаптивные) системы. В последнем классе можно выделить самонастраивающиеся системы с самонастройкой параметров или воздействий и самоорганизующиеся системы с контролируемыми изменениями структуры.В зависимости от принадлежности источника энергии, при помощи которого создаётся управляющее воздействие, системы могут быть прямого и непрямого действия. В системах прямого действия используется энергия управляемого объекта. К ним относятся простейшие системы стабилизации (уровня, расхода, давления и т.п.), в которых воспринимающий элемент через рычажную систему непосредственно действует на исполнительный орган (заслонку, клапан и т.д.). В системах непрямого действия управляющее воздействие создаётся за счёт энергии дополнительного источника.2.1 Системы автоматической стабилизации, программного регулирования и следящие системыСистемы автоматического регулирования в зависимости от характера изменения управляющего воздействия делятся на три касса. Различают системы автоматической стабилизации, системы программного регулирования и следящие системы.Системы автоматической стабилизации характеризуются тем, что в процессе работы системы управляющее воздействие остаётся величиной постоянной.Основной задачей системы автоматической стабилизации является поддержание на постоянном уровне с допустимой ошибкой регулируемой величины независимо от действующих возмущений. Действующие возмущения вызывают отклонение регулируемой величины от предписанного ей значения. Отклонением регулируемой величины называется разность между значением регулируемой величины в данный момент времени и её значением, принятым за начало отсчёта.Понятие отклонения регулируемой величины является характерным для систем автоматической стабилизации и позволяет дать качественную оценку динамическим свойствам систем этого классаСистемами автоматической стабилизации являются различного рода САР, предназначенные для регулирования скорости, напряжения, температуры, давления; например, стабилизатор курса самолёта и т.д.Системы программного регулирования отличаются тем, что управляющее воздействие изменяется по заранее установленному закону в функции времени или координат системы.О точности воспроизведения управляющего воздействия на выходе системы воспроизведения судят по величине ошибки, которая определяется разность между управляющим воздействием и регулируемой величиной в данный момент времени.Примером систем программного регулирования могут служить системы управления копировально-фрезерным станком.В следящих системах управляющее воздействие также является величиной переменной, но математическое описание его во времени не может быть установлено, так как источником сигнала служит внешнее явление, закон изменения которого заранее неизвестен. В качестве примера следящей системы можно указать на радиолокационную станцию автоматического сопровождения самолёта.Так как следящие системы предназначены для воспроизведения на выходе управляющего воздействия с возможно большей точностью, то ошибка, так же как и в случае систем программного регулирования, является той характеристикой, по которой можно судить о динамических свойствах следящей системы. Ошибка в следящих системах, как и в системах программного регулирования, является сигналом, в зависимости от величины которого осуществляется управление исполнительным двигателем.2.2 Основные элементы систем автоматического регулированияСистема автоматического регулирования представляет собой комплекс, состоящий из регулируемого объекта и регулятора. По характеру используемых элементов и функциям, которые они выполняют, системы автоматической стабилизации, следящие системы и системы программного регулирования принципиальных различий не имеют.В соответствии с принципом действия системы автоматического регулирования можно выделить основные элементы, как правило, присутствующие во всех системах.Во всех трёх группах систем управляющее воздействие сравнивается с регулируемой величиной. Для выполнения операции сравнения применяются устройства, называемые элементами сравнения. Управляющее воздействие и регулируемая величина, поступающие на два входа элемента сравнения, должны быть предварительно преобразованы и приведены к сигналам одного вида энергии и размерности. Эти операции выполняются измерительным элементом со стороны управляющего воздействия.В большинстве случаев непосредственное использование выходного сигнала элемента сравнения для приведения в действие регулирующего органа объекта не представляется возможным. Поэтому возникает необходимость в предварительном усилении сигнала как по величине, так и по мощности. Кроме того, часто необходимо осуществить и преобразование сигнала, связанное с формой представления воздействия, и перевод его из одного вида энергии в другой. Эти функции обычно выполняются тем или иным усилителем. Таким образом, в системах автоматического регулирования в числе основных устройств в большинстве случаев применяют усилительный элемент .В практике могут встретится случаи, когда применение усилителей не обязательно. При этом регулятор непосредственно действует на регулирующий орган и называется регулятор прямого действия . Автоматическая система с регулятором прямого действия называется системой прямого регулирования .При наличии усилителей регулирующее устройство называется регулятором непрямого действия. Автоматическая система с регулятором непрямого действия называется системой непрямого регулирования .Приведение в действие регулирующего органа объекта обычно осуществляется с помощью исполнительного элемента.В системе автоматического регулирования, составленной из объекта регулирования, элемента сравнения, усилителя и исполнительного элемента, динамические процессы могут протекать недостаточно качественно, по тем или иным причинам процесс регулирования может оказаться вообще неустойчивым. Для того чтобы система автоматического регулирования обладала устойчивым процессом и удовлетворяла требуемым условиям качества процесса регулирования, применяют корректирующие устройства.Таким образом, система автоматического регулирования состоит из объекта регулирования и регулятора. Регулятор включает в себя такие основные элементы, как элемент сравнения, усилитель, исполнительный элемент и корректирующие устройства.Обычно системы автоматического регулирования представляют в виде структурных схем. Эта структурная схема может представлять все три группы систем, то есть системы автоматической стабилизации, следящие системы и системы программного регулирования. Принципиальной разницы между этими системами по применению и назначению элементов нет. Есть некоторое различие в задающем элементе. Так, например, задающий элемент в системе автоматической стабилизации вырабатывает управляющее воздействие постоянной величины, которое называется уставкой регулятора и с которой сравнивается регулируемая величина при работе системы. При работе схемы в режиме следящей системы задающий элемент должен обеспечить измерение управляющего сигнала, поступающего на следящую систему извне.2.3 Статическое и астатическое регулированиеСистемы автоматической стабилизации, следящие системы и системы программного регулирования разделяют на две группы: системы статические и системы астатические (не имеющие статической ошибки).Система автоматического регулирования будет статической по отношению к возмущающему воздействию, если при стремлении возмущающего воздействия к постоянной величине отклонения регулируемой величины также стремится к постоянной величине, отличной от нуля и зависящей от величины приложенного воздействия.Систему автоматического регулирования можно назвать статической по отношению к управляющему воздействию, если при стремлении последнего к постоянной величине ошибка также стремится к постоянной, отличной от нуля, величине и зависит от значения приложенного воздействия.Система автоматического регулирования будет астатической по возмущающему воздействию, если при стремлении возмущающего воздействия к постоянной величине отклонение регулируемой величины стремится к нулю и не зависит от величины приложенного воздействия.Система автоматического регулирования будет астатической по отношению к управляющему воздействию, если при стремлении управляющего воздействия к постоянной величине ошибка стремится к нулю и не зависит от величины воздействия.2.4 Системы автоматического регулирования непрерывного, импульсного и релейного действияВ зависимости от вида сигналов различают системы автоматического регулирования непрерывные, релейные и импульсные.Особенностью непрерывных систем является то, что во всех элементах, составляющих систему, входные и выходные сигналы являются непрерывными функциями времени. К числу непрерывных систем относятся также системы с |гармонической модуляцией. При этом для передачи сигнала могут быть использованные амплитудно-модулированные, частотно-модулированные колебания и колебания с модулированной фазой.2.5 Регулирование по возмущению и комбинирование регулированияПроцесс реализации компенсации возмущающего воздействия называется регулированием по возмущению. Регулирование по возмущению обладает достоинствами и недостатками. В числе достоинств следует отметить высокое быстродействие. К недостаткам нужно отнести то, что цепь компенсации обеспечивает необходимое качество регулирования только при действии того возмущения, на которое она рассчитана. При действии другого возмущения и необходимости компенсировать его действие нужно вводить новую цепь компенсации, что, конечно, усложняет систему. Цепь компенсации не является обратной связью, потому что по этой цепи передаётся входной сигнал, а не регулируемая (выходная) величина объекта.В системах, использующих принцип обратной связи или принцип регулирования по отклонению, решающее значение имеет сам факт отклонения регулируемой величины от установленной программы независимо от характера величины, вызвавшей это отклонение. Поэтому в системах автоматического регулирования по отклонению нет недостатка, имеющего место в системах регулирования по возмущению.В технике автоматического регулирования имеются системы, в которых совмещаются достоинства регулирования по отклонению и возмущению. Система, в которых одновременно используются оба принципа регулирования, называются комбинированными, а принципы в этих системах - комбинированным регулированием.
Заключение
Воздействие, приложенное к системе автоматического регулирования, вызывает изменение регулируемой величины. Изменение регулируемой величины во времени определяет переходный процесс, характер которого зависит от воздействия и от свойств системы.Является ли система следящей системой, на выходе которой нужно воспроизвести как можно более точно закон изменения управляющего сигнала, или системой автоматической стабилизации, где независимо от возмущения регулируемая величина должна поддерживаться на заданном уровне, переходный процесс представляется динамической характеристикой, по которой можно судить о качестве работы системы.Любое воздействие, приложенное к системе, вызывает переходный процесс. Однако в рассмотрение обычно входят те переходные процессы, которые вызваны типовыми воздействиями, создающими условия более полного выявления динамических свойств системы. К числу типовых воздействий относятся сигналы скачкообразного и ступенчатого вида, возникающие, например, при включении системы или при скачкообразном изменении нагрузки; сигналы ударного действия, представляющие собой импульсы малой длительности по сравнению с временем переходного процесса.Чтобы качественно выполнить задачу регулирования в различных изменяющихся условиях работы система должна обладать определённым (заданным) запасом устойчивости .В устойчивых системах автоматического регулирования переходный процесс с течением времени затухает и наступает установившееся состояние. Как в переходном режиме, так и в установившемся состоянии выходная регулируемая величина отличается от желаемого закона изменения на некоторую величину, которая является ошибкой и характеризует точность выполнения поставленных задач. Ошибки в установившемся состоянии определяют статическую точность системы и имеют большое практическое значение. Поэтому при составлении технического задания на проектирование системы автоматического регулирования отдельно выделяются требования, предъявляемые к статической точности .Большой практический интерес представляет поведение системы в переходном процессе. Показателями переходного процесса являются время переходного процесса, перерегулирование и число колебаний регулируемой величины около линии установившегося значения за время переходного процесса.Показатели переходного процесса характеризуют качество системы автоматического регулирования и являются одним из важнейших требований, предъявляемых к динамическим свойствам системы.Таким образом, для обеспечения необходимых динамических свойств к системам автоматического регулирования должны быть предъявлены требования по запасу устойчивости, статической точности и качеству переходного процесса.В тех случаях когда воздействие (управляющее или возмущающее) не является типовым сигналом и не может быть сведено к типовому, то есть когда оно не может рассматриваться как сигнал с заданной функцией времени и является случайным процессом, в рассмотрение вводят вероятностные характеристики. Обычно при этом оценивается динамическая прочность системы с помощью понятия среднеквадратичной ошибки. Следовательно, в случае систем автоматического регулирования, находящихся под воздействием случайных стационарных процессов, для получения желаемых динамических свойств системы нужно предъявить определённые требования к величине среднеквадратичной ошибки.
Список использованной литературы
Виноградов, В.М. Автоматизация технологических процессов и производств. Введение в специальность: Учебное пособие / В.М. Виноградов, А.А. Черепахин. - М.: Форум, 2018. - 305 c.Еремеев, С.В. Автоматизация технологических процессов и производств в нефтегазовой отрасли: Учебное пособие / С.В. Еремеев. - СПб.: Лань, 2018. - 136 c.Клепиков, В.В. Автоматизация производственных процессов: Учебное пособие / В.В. Клепиков, А.Г. Схиртладзе, Н.М. Султан-заде. - М.: Инфра-М, 2019. - 351 c.Павлючков, С.А. Автоматизация производства (металлообработка): Рабочая тетрадь / С.А. Павлючков. - М.: Academia, 2019. - 160 c.Петровский, В.С. Автоматизация технологических процессов и производств лесопромышленного комплекса: Учебник / В.С. Петровский. - М.: Академия, 2017. - 256 c.Скрябин, В.А. Автоматизация производственных процессов в машиностроении: Учебник / В.А. Скрябин, А.Г. Схиртладзе, А.Е. Зверовщиков, М . - М.: Инфра-М, 2018. - 384 c.Софронова Н. В., Бельчусов А. А. Теория и методика обучения информатике. Учебное пособие. М.: Юрайт, 2020. 402 с.Трофимов В. В. Информатика. Учебник для академического бакалавриата. В 2-х томах. Том 2. М.: Юрайт, 2019. 406 с.Филимонова Е. В. Информатика и информационные технологии в профессиональной деятельности. Учебник. М.: Юстиция, 2019. 216 с.Хлебников А. А. Информатика. Учебник. М.: Феникс, 2017. 448 с.Цацкина Е. П., Царегородцев А. В. Информатика и методы математического анализа. Учебно-методическое пособие. В 2 частях. Часть 1. Информатика. М.: Проспект, 2019. 96 с.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Составить рисковый проект (проектирование объекта по управлению рисками)
Контрольная, Проектный менеджмент
Срок сдачи к 8 дек.
Написать реферат по теме: «Государство всеобщего благоденствия»: концепция К. Мюрдаля.
Реферат, Политические и правовые учения
Срок сдачи к 8 дек.
Административно-правовое регулирования в сфере профилактики правонарушений несовершеннолетних
Диплом, Юриспруденция
Срок сдачи к 5 дек.
Конституционные основы статуса иностранцев и лиц без гражданства в России.
Курсовая, Конституционное право
Срок сдачи к 12 дек.
Физическая культура и спорт в высшем учебном заведении.
Реферат, Физическая культура
Срок сдачи к 6 дек.
Тенденции развития института участия прокурора в арбитражном судопроизводстве.
Курсовая, Прокурорский надзор
Срок сдачи к 15 дек.
Описание задания в файле, необходимо выполнить 6 вариант
Курсовая, Схемотехника
Срок сдачи к 20 янв.
Аристотель, 15 страниц, не менее 5 источников и ссылки указывающие на...
Реферат, Философия
Срок сдачи к 12 дек.
Нужен реферат на 10 листов
Реферат, Математическое Моделирование Водных Экосистем
Срок сдачи к 11 дек.
Финансовый анализ компании Wildberries - участие компании на рынке ценных бумаг и использование компанией деривативов и валюты в рамках своей деятельности
Доклад, Финансы
Срок сдачи к 11 дек.
Заполните форму и узнайте цену на индивидуальную работу!