это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
3798825
Ознакомительный фрагмент работы:
Введение
Цитология (греч. citos – клетка и logos – наука) изучает строение и функционирование клетки – элементарной структурной единицы живых организмов. Знание морфологии и основ физиологии клетки необходимо для понимания таких дисциплин, как гистология, эмбриология, анатомия, физиология и биохимия животных. Сумма названных дисциплин является основой для изучения дисциплин профессионального ряда: кормления, генетики и разведения животных, основ ветеринарии и воспроизводства животных.Составной частью курса является раздел «Основы эмбриологии». Эмбриология (греч. embrion – зародыш) изучает зародышевое (эмбриональное) развитие животных от образования половых клеток до рождения.Гистология (греч. histos – ткань, logos – наука) изучает строение и функционирование тканей в составе животного организма. Ткань – это исторически (филогенетически) сложившаяся система гистологических элементов (клеток и неклеточных образований), объединенных на основе сходства морфологических признаков, выполняемых функций и источников развития. Общая гистология изучает классификацию, строение и функционирование тканей в животном организме.Эмбриональные зачатки - непосредственные источники развития тканей в онтогенезе. Дифференцировка материала среднего зародышевого листка приводит к формированию компактной хорды, играющей роль оси симметрии зародыша, а также мезодермы, которая разделяется на медиально расположенные метамерные участки - сомиты, лежащие центрально нефротомы и формирующиеся латерально несегментированные участки - спланхнотомы, образованные париетальным и висцеральным.Начало развития эмбриологии было положено в Греции более 2-х тысяч лет назад. Впервые Гиппократ описал развитие зародыша в курином яйце и пытался понять процесс развития эмбриона у млекопитающих.Позднее Аристотель достаточно полно описал процесс развития у млекопитающих внутренних органов в эмбриогенезе. Описал функции плаценты и пуповины. Им впервые было выявлено, что в начальный период развития в организме появляются общие черты, свойственные животным вообще, а позднее формируются частные признаки, характерные данному типу, или виду животных.Особенно бурное развитие получила эмбриология в последние 50 лет в связи с использованием современных методов исследования (электронной микроскопии, гистохимии, гистоавторадиографии, микрохирургии, культуры тканей и др.Достижения современной эмбриологии нашли широкое применение в практике животноводства и ветеринарии. Это искусственное осеменение животных, стимуляция многоплодия, трансплантация эмбрионов. Генно- инженерные манипуляции позволили ученым получить животное от соматической клетки (Овечка Долли в Шотландии).Знание эмбриологии позволяет ветеринарным врачам выяснять причины бесплодия и других вопросов акушерства, что необходимо для эффективного лечения животных, повышения их плодовитости и тем самым ускорения воспроизводства животных.Задачи и значение гистологии.1. Она вместе с другими науками формирует врачебное мышление.2. Гистология создает биологические основы для развития ветеринарной медицины и животноводства.3. Гистологические методы широко применяют в диагностике болезней животных.4. Гистология обеспечивает контроль качества и эффективности применения кормовых добавок и профилактических средств.5. С помощью гистологических методов исследования осуществляют контроль терапевтической эффективности ветпрепаратов.6. Обеспечивает оценку качества селекционной работы с животными и воспроизводства стада.7. Любое целенаправленное вмешательство в организм животных можно контролировать гистологическими методами.Определение понятия «клетка». Её структурная организацияКлетка - это основная структурная и функциональная единица, которая лежит в основе строения, развития и жизнедеятельности организмов животных и растений. Она состоит из 2-х неразрывно связанных частей: цитоплазмы и ядра. Цитоплазма включает 4 компонента:Клеточную оболочку (плазмолемма).ГиалоплазмуОрганеллы (органоиды)Клеточные включенияЯдро также состоит из 4 частей:Ядерной оболочки, или кариолеммыЯдерного сока, или кариоплазмыХроматинаЯдрышкаПлазмолемма - это внешняя оболочка клетки. Построена из биологической мембраны, надмембранного комплекса и подмембранного аппарата. Удерживает клеточное содержимое, защищает клетку и обеспечивает ее взаимодействие с околоклеточной средой, другими клетками и тканевыми элементами.Гиалоплазма - коллоидная среда цитоплазмы. Служит для размещения органелл, включений, осуществления их взаимодействия.Органеллы - это постоянные структуры цитоплазмы, выполняющие в ней определенные функции.Включения - вещества, поступающие в клетку для целей питания или образующиеся в ней в результате процессов жизнедеятельности.Ядерная оболочка состоит из двух биологических мембран, отграничивает содержимое ядра от цитоплазмы и одновременно обеспечивает их тесное взаимодействие.Ядерный сок - коллоидная среда ядра.Хроматин - форма существования хромосом. Состоит из ДНК, гистоновых и негистоновых белков, РНК.Ядрышко - комплекс ДНК ядрышковых организаторов, рибосомальной РНК, белков и субъединиц рибосом, здесь формирующихся.Строение животной клетки1. Цитоплазма и органеллы, их функция.2. Ядро, его строение и функции.3. Типы деления, фазы клеточного цикла.1. Цитоплазма, отделенная от окружающей среды плазмолеммой, включает в себя гиалоплазму, находящиеся в ней обязательные клеточные компоненты - органеллы, а также различные непостоянные структуры – включения (рис.1).Гиалоплазма (hyalinos - прозрачный) - основная плазма, или матрикс цитоплазмы, представляет собой очень важную часть клетки, её истинную внутреннюю среду.В электронном микроскопе матрикс имеет вид гомогенного и тонкозернистого вещества с низкой электронной плотностью. Гиалоплазма является сложной коллоидной системой, включающей в себя различные биополимеры: белки, нуклеиновые кислоты, полисахариды и др. Эта система способна переходить из золеобразного (жидкого) состояния в гелеобразное и обратно. В состав гиалоплазмы входят главным образом различные глобулярные белки. Они составляют 20-25% общего содержания белков в эукариотической клетке. К важнейшим ферментам гиалоплазмы относятся ферменты метаболизма сахаров, азотистых оснований, аминокислот, липидов и других важных соединений. В гиалоплазме располагаются ферменты активации аминокислот при синтезе белков, транспортные РНК (тРНК). В гиалоплазме при участии рибосом и полирибосом происходит синтез белков, необходимых для собственно клеточных нужд, для поддержания и обеспечения жизни данной клетки.Органеллы - постоянно присутствующие и обязательные для всех клеток микроструктуры, выполняющие жизненно важные функции.Различают мембранные органеллы - митохондрии, эндоплазматическую сеть (гранулярная и гладкая), аппарат Гольджи, лизосомы, к категории мембранных органелл относится и плазмолемма; н е м ембранные органеллы: свободные рибосомы и полисомы, микротрубочки, центриоли и филаменты (микрофиламенты). Во многих клетках органеллы могут принимать участие в образовании особых структур, характерных для специализированных клеток. Так, реснички и жгутики образуются за счет центриолей и плазматической мембраны, микроворсинки - это выросты плазматической мембраны с гиалоплазмой и микрофиламентами, акросома спермиев - это производное элементов аппарата Гольджи и пр.Рис 1. Ультрамикроскопическое строение клетки животных организмов (схема)1 – ядро; 2 – плазмолемма; 3 – микроворсинки; 4 – агранулярная эндоплазматическая сеть; 5 - гранулярная эндоплазматическая сеть; 6 – аппарат Гольджи; 7 – центриоль и микротрубочки клеточного центра; 8 – митохондрии; 9 – цитоплазматические пузырьки; 10 – лизосомы; 11 – микрофиламенты; 12 – рибосомы; 13 – выделение гранул секрета.Мембранные органеллы представляют собой одиночные или связанные друг с другом отсеки цитоплазмы, отграниченные мембраной от окружающей их гиалоплазмы, имеющие своё собственное содержимое, отличное по составу, свойствам и функциям:Митохондрии - органеллы синтеза АТФ. Их основная функция связана с окислением органических соединений и использованием освобождающейся при распаде этих соединений энергии для синтеза молекул АТФ. Митохондрии ещё называют энергетическими станциями клетки, или органеллами клеточного дыхания.Термин “”митохондрия” был введён Бенда в 1897 году. Митохондрии можно наблюдать в живых клетках, т.к. они обладают достаточно высокой плотностью. В живых клетках митохондрии могут перемещаться, сливаться друг с другом, делиться. Форма и размеры митохондрий животных клеток разнообразны, но в среднем толщина их около 0,5 мкм, а длина - от 1 до 10 мкм. Количество их в клетках сильно варьирует - от единичных элементов до сотен. Так, в клетке печени они составляют более 20% общего объема цитоплазмы. Площадь поверхности всех митохондрий печеночной клетки в 4-5 раз больше поверхности её плазматической мембраны.Митохондрии ограничены двумя мембранами толщиной около 7 нм. Наружная митохондриальная мембрана ограничивает собственно внутреннее содержимое митохондрии, её матрикс. Характерной чертой внутренних мембран митохондрий является их способность образовывать многочисленные впячивания внутрь митохондрий. Такие впячивания чаще имеют вид плоских гребней, или крист. Нити матрикса митохондрий представляют собой молекулы ДНК, а мелкие гранулы - митохондриальные рибосомы.Эндоплазматическая сеть была открыта К.Р. Портером в 1945 г. Эта органелла представляет собой совокупность вакуолей, плоских мембранных мешков или трубчатых образований, создающих как бы мембранную сеть внутри цитоплазмы. Различают два типа - гранулярную и гладкую эндоплазматическую сеть.Гранулярная эндоплазматическая сеть представлена замкнутыми мембранами, отличительной чертой которых является то, что они со стороны гиалоплазмы покрыты рибосомами. Рибосомы участвуют в синтезе белков, выводимых из данной клетки. Кроме того, гранулярная эндоплазматическая сеть принимает участие в синтезе белков-ферментов, необходимых для организации внутриклеточного метаболизма, а также используемых для внутриклеточного пищеварения.Белки, накапливающиеся в полостях сети, могут, минуя гиалоплазму, транспортироваться в вакуоли комплекса Гольджи, где они часто модифицируются и входят в состав либо лизосом, либо секреторных гранул.Роль гранулярной эндоплазматической сети заключается в синтезе на её полисомах экспортируемых белков, в их изоляции от содержимого гиалоплазмы внутри мембранных полостей, в транспорте этих белков в другие участки клетки, а также в синтезе структурных компонентов клеточных мембран.Агранулярная (гладкая) эндоплазматическая сеть также представлена мембранами, образующими мелкие вакуоли и трубки, канальцы, которые могут ветвиться друг с другом. В отличие от гранулярной эндоплазматической сети на мембранах гладкой эндоплазматической сети нет рибосом. Диаметр вакуолей и канальцев обычно около 50-100 нм.Гладкая эндоплазматическая сеть возникает и развивается за счет гранулярной эндоплазматической сети.Деятельность гладкой ЭПС связана с метаболизмом липидов и некоторых внутриклеточных полисахаридов. Гладкая ЭПС участвует в заключительных этапах синтеза липидов. Она сильно развита в клетках, секретирующих стероиды в корковом веществе надпочечников и сустентоцитах ( клетки Сертоли) семенников.В поперечнополосатых мышечных волокнах гладкая ЭПС способна депонировать ионы кальция, необходимые для функции мышечной ткани.Очень важна роль гладкой ЭПС в дезактивации различных вредных для организма веществ.Комплекс Гольджи (КГ). В 1898 г. К. Гольджи, используя свойства связывания тяжелых металлов с клеточными структурами, выявил в нервных клетках сетчатые образования, которые он назвал внутренним сетчатым аппаратом.Он представлен мембранными структурами, собранными вместе в небольшой зоне. Отдельная зона скопления этих мембран называется диктиосомой. Таких зон в клетке может быть несколько. В диктиосоме плотно друг к другу (на расстоянии 20-25 нм) расположены 5-10 плоских цистерн, между которыми располагаются тонкие прослойки гиалоплазмы. Кроме цистерн в зоне КГ наблюдается множество мелких пузырьков (везикул). КГ участвует в сегрегации и накоплении продуктов, синтезированных в цитоплазматической сети, в их химических перестройках, созревании; в цистернах КГ происходит синтез полисахаридов, их комплексирование с белками и, главное, выведение готовых секретов за пределы клетки.Лизосомы - это разнообразный класс шаровидных структур размером 0,2-0,4 мкм, ограниченных одиночной мембраной.Характерным признаком лизосом является наличие в них гидролитических ферментов, расщепляющих различные биополимеры. Лизосомы были открыты в 1949 г. де Дьювом.Пероксисомы - небольшие размером 0,3-1,5 мкм овальной формы тельца, ограниченные мембраной. Они особенно характерны для клеток печени, почек. Ферменты окисления аминокислот образуют перекись водорода, который разрушается ферментом каталаза. Каталаза пероксисом играет важную защитную роль, так как Н2О2 является токсическим веществом для клетки.Строение и функции ядраЯдро клетки является ее второй важнейшей составляющей частью.У большинства клеток выражено одно ядро, однако часть клеток печени и кардиомиоцитов имеют 2 ядра. В макрофагах костной ткани их насчитывается от 3 до нескольких десятков, а в поперечно-полосатом мышечном волокне обнаруживается от 100 до 3-х тысяч ядер. Наоборот, эритроциты млекопитающих являются безъядерными.Форма ядра чаще округлая, но в призматических клетках эпителия овальная, в плоских клетках оно уплощенное, у зрелых зернистых лейкоцитов сегментированное, у гладких миоцитов удлиняется до палочковидного. Располагается ядро, как правило, в центре клетки. У плазмоцитов лежит эксцентрично, а в призматических эпителиоцитах смещается к базальному полюсу.Химический состав ядра:Белки - 70 %, нуклеиновые кислоты - 25 %, углеводы, липиды и неорганические вещества составляют примерно 5%.Структурно ядро построено из:1. ядерной оболочки (кариолеммма),2. ядерного сока (кариоплазма),3. ядрышка,4. хроматина.Ядерная оболочка - кариолемма состоит из 2-х элементарных биологических мембран. Между ними выражено перинуклеарное пространство. В отдельных участках две мембраны соединяются между собой и формируют поры кариолеммы, диаметром до 90 нм. В них имеются структуры, образующие так называемый поровый комплекс из трех пластинок. По краям каждой пластинки лежит 8 гранул, а в их центре - одна. К ней от периферических гранул идут тончайшие фибриллы (нити). В результате формируются своеобразные диафрагмы для регуляции перемещения через оболочку органических молекул и их комплексов.Функции кариолеммы:1. разграничительная,2. регуляторная.Ядерный сок (кариоплазма) - это коллоидный раствор углеводов, белков, нуклеотидов и минеральных веществ. Представляет собой микросреду для обеспечения реакций обмена веществ и перемещения информационных и транспортных РНК к ядерным порам.Хроматин - это форма существования хромосом. Представлен комплексом молекул ДНК, РНК, белков-упаковщиков и ферментов (гистоны и негистоновые белки). Гистоны непосредственно связаны с хромосомой. Они обеспечивают спирализацию молекулы ДНК в хромосоме. Негистоновые белки - это ферменты: ДНК - нуклеазы, разрушающие комплементарные связи, вызывающие ее деспирализацию;ДНК и РНК - полимеразы, обеспечивающих построение молекул РНК на расшитой ДНК, а также самоудвоение хромосом перед делением.Хроматин представлен в ядре в двух формах:1. диспергированный эухроматин, который выражен в виде мелкой зернистости и нитей. В этом случае участки молекул ДНК находятся в раскрученном состоянии. На них легко синтезируются молекулы РНК, считывающие информацию о строении белка, строятся транспортные РНК. Образовавшаяся и - РНК перемещается в цитоплазму и внедряется в рибосомы, где осуществляются процессы синтеза белка. Эухроматин представляет функционально активную форму хроматина. Его преобладание свидетельствует о высоком уровне процессов жизнедеятельности клетки.2. Конденсированный гетерохроматин. При световой микроскопии выглядит в виде крупных гранул и глыбок. При этом белки-гистоны плотно спирализуют и упаковывают молекулы ДНК, на которых поэтому невозможно построить и - РНК, отчего гетерохроматин представляет функционально неактивную, невостребованную часть хромосомного набора.Ядрышко. Имеет округлую форму, диаметром до 5 мкм. В клетках может быть выражено от 1 до 3 ядрышек, в зависимости от ее функционального состояния. Представляет совокупность концевых участков нескольких хромосом, которые называются ядрышковыми организаторами. На ДНК ядрышковых организаторов образуются рибосомальные РНК, которые, объединяясь с соответствующими белками, формируют субъединицы рибосом.Функции ядра:1. Сохранение в неизмененном виде полученной от материнской клетки наследственной информации.2. Координация процессов жизнедеятельности и реализация наследственной информации посредством синтеза структурных и регуляторных белков.3. Передача наследственной информации дочерним клеткам при делении.Виды клеточного деленияДеление представляет способ самовоспроизведения клеток. Оно обеспечивает:а) непрерывность существования клеток определенного типа;б) тканевой гомеостаз;в)физиологическую и репаративную регенерацию тканей и органов;г) размножение особей и сохранение видов животных.Существует 3 способа деления клеток:1. амитоз - деление клетки без видимых изменений хромосомного аппарата. Оно происходит путем простой перетяжки ядра и цитоплазмы. Хромосомы не выявляются, веретено деления не образуется. Свойственен некоторым эмбриональным и поврежденным тканям.2. митоз - способ деления соматических и половых клеток на стадии размножения. При этом из одной материнской клетки образуются две дочерние с полным, или диплоидным, набором хромосом.3. мейоз - это способ деления половых клеток на стадии созревания, при котором из одной материнской клетки образуются 4 дочерние с половинным, гаплоидным, набором хромосом.Гаметогенез, стадии раннего эмбриогенеза1. Строение половых клеток позвоночных.2. Сперматогенез и овогенез.3. Стадии раннего эмбриогенеза.1. Эмбриология - наука о развитии зародыша. Она изучает индивидуальное развитие животных с момента зарождения (оплодотворение яйцеклетки) до его вылупления или рождения. Эмбриология рассматривает развитие и строение половых клеток и основные этапы эмбриогенеза: оплодотворение, дробление, гаструляцию, закладку осевых органов и органогенез, развитие провизорных (временных) органов.Достижения современной эмбриологии широко используют в животноводстве, птицеводстве, при разведении рыб; в ветеринарии и медицине при решении многих практических задач, касающихся искусственного осеменения и оплодотворения, технологии ускоренного воспроизводства и селекции; повышения плодовитости с/х животных, размножения животных путем трансплантации эмбрионов, при изучении патологии беременности, при распознавании причин бесплодия и других вопросов акушерства.По строению половые клетки сходны с соматическими клетками. Они также состоят из ядра и цитоплазмы, построенной из органелл и включений.Отличительные свойства зрелых гаметоцитов - низкий уровень процессов ассимиляции и диссимиляции, неспособность к делению, содержание в ядрах гаплоидного (половины) числа хромосом.Половые клетки самцов (спермии) у всех позвоночных имеют жгутиковую форму . Образуются они в семенниках в большом количестве. В одной порции выделенного семени (эякулята) содержатся десятки миллионов и даже миллиардов спермиев.Спермии с/х животных обладают подвижностью. Как размер, так и форма спермиев у разных животных сильно варьирует. Они состоят из головки, шейки и хвостового отдела. Спермии гетерогенны, т. к. в их ядрах содержатся разные типы половых хромосом. Половина спермиев имеет Х-хромосому, другая половина - Y хромосому. Половые хромосомы несут генетическую информацию, определяющую половые признаки самца. От остальных хромосом (аутосом) они отличаются большим содержанием гетерохроматина, размером и строением.Спермии обладают минимальным запасом питательных веществ, которые очень быстро расходуются при движении клетки. Если не произойдет слияния спермия с яйцеклеткой, то в половых путях самки он обычно погибает через 24-36 часов.Продлить жизнь спермиев можно замораживанием. Губительно влияют на спермии хинин, алкоголь, никотин и другие наркотические вещества.Строение яйцеклеток. Размер яйцеклетки гораздо больше спермия. Диаметр овоцитов варьирует от 100 мкм до нескольких мм. Яйцеклетки позвоночных овальной формы, неподвижны, состоят из ядра и цитоплазмы . Ядро содержит гаплоидный набор хромосом. Яйцеклетки млекопитающих относят к гомогаметным, т. к. в их ядре имеется только Х-хромосома. В цитоплазме содержатся свободные рибосомы, эндоплазматическая сеть, комплекс Гольджи, митохондрии, желток и другие компоненты. Овоциты обладают полярностью. В связи с чем в них различают два полюса: апикальный и базальный. Периферический слой цитоплазмы яйцеклетки называют кортикальным слоем (cortex - кора). Он лишен полностью желтка, содержит множество митохондрий.Яйцеклетки покрыты оболочками. Различают первичную, вторичную и третичную оболочки. Первичная оболочка - это плазмолемма. Вторичная оболочка (прозрачная или блестящая) является производной фолликулярных клеток яичника. Третичные оболочки формируются в яйцеводе у птиц: белок, подскорлуповая и скорлуповая оболочки яйца. По количеству желтка различают яйцеклетки с малым количеством - олиголецитальные (oligos - мало, lecytos - желток), со средним количеством - мезолецитальные (mesos - средний) и с большим количеством - полилецитальные (poli - много).По месту расположения желтка в цитоплазме различают яйцеклетки с равномерным распределением желтка - изолецитальные, или гомолецитальные, и с локализацией желтка у одного полюса - телолецитальные ( telos - край, конец). Олиголецитальные и изолецитальные яйцеклетки - у ланцетника и млекопитающих, мезолецитальные и телолецитальные - у амфибий, некоторых рыб, полилецитальные и телолецитальные - у многих рыб, пресмыкающихся, птиц.2. Родоначальниками половых клеток являются первичные половые клетки - гаметобласты (гонобласты). Выявляются они в стенке желточного мешка вблизи кровеносных сосудов. Гонобласты интенсивно делятся митозом и с током крови или по ходу кровеносных сосудов мигрируют в зачатки половых желез, где окружаются поддерживающими (фолликулярными) клетками. Последние выполняют трофическую функцию. Затем, в связи с развитием пола животного, половые клетки приобретают свойства, характерные для спермиев и яйцеклеток.Развитие спермиев (сперматогенез) протекает в семенниках половозрелого животного. В сперматогенезе различают 4 периода: размножение, рост, созревание и формирование.Период размножения. Клетки называются сперматогониями. Они имеют небольшие размеры, диплоидное число хромосом. Клетки интенсивно делятся митозом. Делящиеся клетки являются стволовыми клетками и пополняют запас сперматогоний.Период роста. Клетки называются первичными сперматоцитами. У них сохраняется диплоидное число хромосом. Увеличивается размер клетки и происходят сложные изменения в перераспределении наследственного материала в ядре, в связи с чем различают четыре стадии: лептотенную, зиготенную, пахитенную, диплотеннуюПериод созревания. Это процесс развития сперматид с половинным числом хромосом.В процессе созревания из каждого первичного сперматоцита возникает 4 сперматиды с одинарным числом хромосом. В них хорошо развиты митохондрии, комплекс Гольджи, центросома, расположены вблизи ядра. Другие органеллы, а также включения почти отсутствуют. Сперматиды не способны делиться.Период формирования. Сперматида приобретает морфологические свойства, характерные для спермия. Комплекс Гольджи преобразуется в акросому, в виде чехлика охватывающую ядро сперматиды. Акросома богата ферментом гиалуронидазой. К противоположному от ядра полюсу перемещается центросома, в которой различают проксимальную и дистальную центриоли. Проксемальная центриоль остается в шейке спермия, а дистальная – идет на построение хвостика.Развитие яйцеклеток, овогенез - сложный и очень длительный процесс. Он начинается в период эмбриогенеза и завершается в органах половой системы половозрелой самки. Слагается овогенез из трех периодов: размножения, роста, созревания.Период размножения протекает в период внутриутробного развития и завершается в течение первых месяцев после рождения. Клетки называются овогониями, имеют диплоидное число хромосом.В период роста клетки называются первичными ооцитами. Изменения в ядрах аналогичны первичным сперматоцитам. Затем в ооците начинается интенсивный синтез и накопление желтка: стадия превителлогенеза и стадия вителлогенеза. Вторичная оболочка ооцита состоит из одного слоя фолликулярных клеток. Превителлогенез обычно длится до наступления половой зрелости самки. Период созревания состоит из быстро следующих друг за другом делений созревания, в ходе которых диплоидная клетка становится гаплоидной. Этот процесс обычно протекает в яйцеводе после овуляции.Первое деление созревания завершается образованием двух неравноценных структур - вторичного ооцита и первого направительного или редукционного тельца . В ходе второго деления также образуется одна зрелая яйцеклетка и второе направительное тельце. Первое тельце также делится. Следовательно, из одного первичного ооцита в процессе созревания возникает только одна зрелая яйцеклетка и три направительных тельца последние вскоре гибнут.Все яйцеклетки генетически однородны, т. к. имеют только Х-хромосому.3. Оплодотворение - слияние половых гамет и образование нового одноклеточного организма (зиготы). От зрелой яйцеклетки она отличается удвоенной массой ДНК, диплоидным числом хромосом. Оплодотворение у млекопитающих внутреннее, происходит оно в яйцеводе при пассивном её передвижении по направлению к матке. Движение спермиев в половых путях самки осуществляется благодаря функции аппарата движения этой клетки (хемотаксиса и реотаксиса), перистальтическим сокращениям стенки матки, движению ресничек, покрывающих внутреннюю поверхность яйцевода. При сближении половых клеток ферменты акросомы головки спермия разрушают слой фолликулярных клеток, вторичную оболочку яйцеклетки. В момент прикосновения спермия к плазмолемме яйцеклетки на её поверхности образуется выпячивание цитоплазмы - бугорок оплодотворения. В ооцит проникают головка и шейка. У млекопитающих в оплодотворении участвует только один спермий - поэтому процесс называется моноспермией: ХY - самец, XX - самка.У птиц, рептилий наблюдается полиспермия. У птиц все спермии имеют Z - хромосому, а яйцеклетки Z или W - хромосому.После проникновения спермия в яйцеклетку вокруг последней формируется оболочка оплодотворения, препятствующая проникновению в ооцит других спермиев ядра половых клеток называются: мужской пронуклеус, женский пронуклеус. Процесс их соединения называется синкарионом. Центриоль, привнесенная спермием, делится и расходится, образуется ахроматиновое веретено. Начинается дробление. Дробление - дальнейший процесс развития одноклеточной зиготы, в ходе которого образуется многоклеточная бластула, которая состоит из стенки - бластодермы и полости - бластоцеля. В процессе митотического деления зиготы образуются новые клетки - бластомеры.Характер дробления у хордовых различен и в значительной степени обусловлен типом яйцеклетки. Дробление может быть полным (голобластическим) или частичным (меробластическим). При первом типе принимает участие весь материал зиготы, при втором - только та ее зона, которая лишена желтка.Полное дробление классифицируют на равномерное и неравномерное. Первое характерно для олиго изолецитальных яиц (ланцетник, аскарида и др.). В оплодотворенной яйцеклетке различают два полюса: верхний - анимальный и нижний - вегететивный. После оплодотворения желток перемещается к вегетативному полюсу.Дробление завершается образованием бластулы, форма которой напоминает шар, заполненный жидкостью. Стенка шара образована клетками бластодермы. Таким образом, при полном равномерном дроблении материал всей зиготы участвует в дроблении и после каждого деления число клеток увеличивается вдвое.Полное неравномерное дробление характерно для мезолецитальных (среднее количество желтка) и телолецитальных яйцеклеток. Это амфибии. Тип бластулы у них – целобластула.Частичное, или меробластическое (дискоидальное) дробление распространено у рыб, птиц и характерно для полилецитальных и телолецитальных яиц (тип бластулы называется дискобластулой).Гаструляция. При дальнейшем развитии бластулы в процессе деления, роста , дифференцировки клеток и их перемещений формируется сначала двух-, а затем трехслойный зародыш. Его слоями являются эктодерма, энтодерма и мезодерма.Типы гаструляции: 1) инвагинация, 2) эпиболия (обрастание), 3) иммиграция (вселение), 4) деляминация (расслоение).Закладка осевых органов. Из указанных зародышевых листков образуются осевые органы: зачаток нервной системы ( нервная трубка), хорда и кишечная трубка.В процессе развития мезодермы у всех позвоночных образуется хорда, сегментированная мезодерма, или сомиты (спинные сегменты), и несегментированная мезодерма, или спланхнотом. Последний состоит из двух листков: наружного - париетального и внутреннего - висцерального. Пространство между этими листками называется вторичной полостью тела.В сомитах различают три зачатка: дерматом, миотом, склеротом. Нефрогонадотом.При дифференцировке зародышевых листков образуется эмбриональная ткань - мезенхима. Она развивается из клеток, выселившихся главным образом из мезодермы и эктодермы. Мезенхима - это источник развития соединительной ткани, гладких мышц, сосудов и других тканей организма животного. Процессы дробления у различных представителей хордовых очень своеобразны и зависят от проморфологии яиц, в особенности от количества и распределения желтка. Процессы гаструляции также весьма варьируют в пределах Chordata.Так, гаструляция у ланцетника типично инвагинационная, начинается она впячиванием презумптивной энтодермы. Вслед за энтодермой инвагинирует в бластоцель материал хорды, а через боковую и вентральную губы бластопора погружается мезодерма. Передняя (или дорсальная) губа бластопора состоит из материала будущей нервной системы, а изнутри из клеток будущей хорды. Как только энтодермальный пласт приходит в контакт с внутренней стороны эктодермального пласта, начинаются процессы, приводящие к формированию зачатков осевых органов.Процесс гаструляции у костистых рыб начинается тогда, когда многослойный бластодиск покрывает только небольшую часть желтка яйца, а заканчивается вместе с полным обрастанием всего ”желточного шара”. Это означает, что гаструляция включает и разрастание бластодиска.Клеточный материал всех трех зародышевых пластов по переднему и боковым краям бластодиска начинают нарастать на желток. Таким образом формируется так называемый желточный мешок.Желточный мешок как часть зародыша выполняет многообразные функции:1) это орган с трофической функцией, т. к. дифференцирующийся энтодермальный пласт продуцирует ферменты, помогающие расщеплять вещества желтка, а в дифференцирующемся мезодермальном пласте образуются кровеносные сосуды, находящиеся в связи с сосудистой системой собственно зародыша.2) желточный мешок - орган дыхания. Газообмен зародыша с внешней средой происходит через стенки сосудов мешка и эктодермальный эпителий.3) “кровяная мезенхима” является клеточной основой кроветворения. Желточный мешок - первый кроветворный орган зародыша.Лягушки, тритоны и морские ежи являются главнейшими объектами экспериментальных эмбриологических исследований в ХХ веке.Инвагинация у амфибий не может происходить так, как у ланцетника, потому что вегетативное полушарие яйца очень перегружено желтком.Первый заметный признак начинающейся гаструляции у лягушек - это появление бластопора, т. е. вдавления или щели в середине серого серпа.Достойно особого внимания поведение клеточного материала нервной системы и эпидермиса кожи. В конце концов, будущий эпидермис и материал нервной системы покрывает всю поверхность зародыша. Презумптивный эпидермис кожи перемещается и истончается во всех направлениях. Совокупность клеток презумптивной нервной системы перемещается почти исключительно в меридиональных направлениях. Пласт клеток будущей нервной системы в поперечном направлении сокращается, презумптивная область нервной системы оказывается вытянутой в анимально-вегетативном направлении.Обобщим известное нам о судьбе каждого из зародышевых листков.Производные эктодермы. Из клеток, составляющих наружный пласт, размножаясь и дифференцируясь, формируются: наружный эпителий, кожные железы, поверхностный слой зубов, роговых чешуй и т. п. Кстати сказать, почти всегда каждый орган развивается из клеточных элементов двух, а то и всех трех зародышевых листков. Например, кожа млекопитающих развивается из эктодермы и мезодермы.Обширная часть первичной эктодермы “погружается” внутрь, под наружный эпителий, и дает начало всей нервной системе.Производные энтодермы. Внутренний зародышевый пласт развивается в эпителий средней кишки и ее пищеварительные железы. Эпителий дыхательной системы развивается из переднего отдела кишечника. Но в его происхождении участвует клеточный материал так называемой прехордальной пластинки.Производные мезодермы. Из неё развиваются все мышечные ткани, все виды соединительной, хрящевой, костной тканей, каналы выделительных органов, перитонеум полости тела, кровеносная система, часть тканей яичников и семенников.У большинства животных средний пласт появляется не только в виде совокупности клеток, образующих компактный эпителиальный слой, т. е. собственно мезодерму, но в виде рыхлого комплекса разрозненных, амебоподобных клеток. Эта часть мезодермы называется мезенхимой. Собственно мезодерма и мезенхима отличаются друг от друга по своему происхождению, между ними нет прямой связи, они не гомологичны. Мезенхима большей частью эктодермального происхождения, начало же мезодерме дает энтодерма. У позвоночных, однако, мезенхима имеет общее с остальной мезодермой происхождение.У всех животных, которым свойственно иметь целом (вторичная полость тела), начало полым целомическим мешкам дает мезодерма. Целомические мешки формируются симметрично по бокам кишечника. Стенка каждого целомического мешка, обращенная в сторону кишечника называется спланхноплеврой. Стенка же, обращенная в сторону эктодермы зародыша, называется соматоплеврой.Таким образом, в ходе развития зародыша формируются различные полости, имеющие важное морфогенетическое значение. Сначала появляется полость Бэра, превращающаяся в первичную полость тела - бластоцель, затем возникает гастроцель (или гастральная полость), наконец у многих животных - целом. При образовании гастроцеля и целома бластоцель все более уменьшается, так что от бывшей первичной полости тела остаются лишь щели в промежутках между стенками кишки и целома. Эти щели превращаются в полости кровеносной системы. Гастроцель со временем превращается в полость средней кишки.Общая характеристика и классификациясоединительных тканейВ понятие «соединительные ткани» (ткани внутренней среды, опорно трофические ткани) объединяются ткани, развивающиеся из единого источника – мезенхимы и имеющие общую соединительно-трофическую функцию.Общие принципы организации соединительных тканей:1) внутреннее расположение в организме;2) преобладание межклеточного вещества над клетками;3) межклеточное вещество делится на волокнистое и аморфное;4) многообразие клеточных форм;5) общий источник происхождения – мезенхима.Главными компонентами соединительных тканей являются волокна - производные клеток, коллагенового и эластического типов и основное (аморфное) вещество, играющее роль интегративно-буферной метаболической среды, а также и клеточные элементы. Клетки здесь создают и поддерживают количественное и качественное соотношение состава неклеточных компонентов.Органная специфичность клеточных элементов соединительной ткани выражается в количестве, форме и соотношении различных видов клеток, их метаболизме и функциях, оптимально приспособленных к функции органа.Специфика соединительной ткани обнаруживается и в соотношении клеток и неклеточных структур в различных участках тела.Межклеточное вещество соединительной тканиОсновное (или аморфное) вещество состоит из белков и углеводов. Белки представлены в основном коллагеном, а также альбу минами и глобулинами. Углеводы представлены полимерными формами, в основном гликозаминогликанами (сульфатированными – хондроитинсерными кислотами, дерматансульфатом и др.) Углеводные компоненты удерживают воду, в зависимости от содержания воды ткань может быть более или менее плотной.Аморфное вещество обеспечивает транспорт веществ из крови клеткам и обратно, в том числе неодинаково: в рыхлой волокнистой соединительной ткани преобладают коллагеновые волокна.Каждое коллагеновое волокно состоит из двух химических компонентов:1) фибриллярного белка коллагена;2) углеводного компонента – гликозаминогликанов и протеогликанов.Оба данных компонента синтезируются фибробластами и выделяются во внеклеточную среду, где и осуществляется их сборка и построение волокна. Коллаген образован тремя полипептидными α-цепями, которые, скручиваясь (имеет спиральное строение, образуют молекулу тропоколлагена. Коллагеновые волокна толщиной 1–20 мкм – это изогнутые тяжи, состоящие из фибрилл с поперечной исчерченностью. Они обладают высокой прочностью и малой растяжимостью.В структурной организации коллагенового волокна выделяют пять уровней.I уровень – полипептидный. Коллаген представлен полипептидными цепочками, состоящие из трех аминокислот – пролина, глицина, лизина.II уровень – молекулярный, представлен молекулой белка коллагена длиной 280 нм, шириной 1,4 нм, состоящей из трех полипептидных цепочек, закрученных в спираль.III уровень – протофибриллярный (толщина 10 нм, состоит из нескольких продольно расположенных молекул коллагена, соединенных между собой водородными связями).IV уровень – микрофибриллы (толщиной от 11–12нм,И более). Они состоят из 5-6протофибрилл, связанных боковыми связями.V уровень – фибрилла (или коллагеновое волокно) толщина 1–10мкм, состоящее из нескольких микрофибрилл – в зависимости от толщины, связанных гликозаминогликанами и протеогликанами. Коллагеновые волокна имеют поперечную исчерченность, обусловленную как расположением аминокислот в полипептид ной цепи, так и расположением цепей в молекуле коллагена. Коллагеновые волокна с помощью углеводных компонентов соединяются в пучки толщиной до 150 мкм.В зависимости от порядка расположения аминокислот в полипептидных цепочках, от степени их гидроксилирования и от качества углеводного компонента различают двенадцать типов белка коллагена, из которых хорошо изучены только пять типов.транспорт из соединительной ткани в эпителиальную.Оно образуется за счет деятельности прежде всего фибробластов – коллагенов и гликозаминогликанов, а так же за счет веществ плазмы крови – альбуминов и глобулинов. Если в нем меньше воды, то оно более плотное и наоборот.Волокнистое вещество представлено коллагеновыми, эластическими и ретикулярными волокнами. В различных органах соотношение названных волокон Эти разновидности белка коллагена входят в состав не только коллагеновых волокон, но и в состав базальных мембран эпителиальной ткани и сосудов, хрящевых тканей, стекловидного тела и других образований. При развитии некоторых патологических процессов происходит распад коллагена и поступление его в кровь. В плазме крови биохимически определяется тип коллагена, следовательно, определяется и предположительная область его распада и его интенсивность.Эластические волокна толщиной от 3 до 10 мкм образованы белком эластином, который также синтезируется фибробластами. В отличие от коллагеновых эластические волокна способны растягиваться в 1,5 раза, после чего возвращаются в исходное состояние. Эластические волокна анастомозируют и переплетаются между собой, образуя сети, окончатые пластины и мембраны. Эластические волокна характеризуются высокой эластичностью, способностью растягиваться и сокращаться, но незначительной прочностью.Они тоньше коллагеновых, не имеют поперечной исчерченности, по ходу разветвляются и анастомозируют друг с другом, образуя эластическую сеть. Химический состав эластических волокон – белок эластин и гликопротеины. Оба компонента синтезируются и выделяются фибробластами, а в стенке сосудов – гладкомышечными клетками. Белок эластин отличается от белка коллагена как составом аминокислот, так и их гидроксилированностью. Структурно эластическое волокно организовано следующим образом: центральная часть волокна представлена аморфным компонентом из молекул эластина, а периферическая часть – мелкофибриллярной сетью. Соотношение аморфного и фибриллярного компонента в эластических волокнах может быть различным. В большинстве волокон преобладает аморфный компонент. При равенстве аморфного и фибриллярного компонентов волокна называют элауниновыми. Встречаются также окситалоновые эластические волокна, состоящие только из фибриллярного компонента. Локализуются эластические волокна, прежде всего в тех органах, которые постоянно изменяют свой объем – в легких, сосудах. Ретикулярные волокна – тонкие (от 100 нм до 1,0 мкм), разветвленные, малорастяжимые, переплетаясь между собой, образуют сеть, в ячейках которой расположены клетки. Эти волокна образуют строму лимфоидных органов (органов кроветворения и иммунной системы), печени, поджелудочной железы и других паренхиматозных органов, окружают капилляры, кровеносные и лимфатические сосуды, а также связаны с ретикулярными клетками.Ретикулярные волокна по своему составу близки к коллагеновым волокнам. Ретикулярные волокна состоят из коллагена третьего типа и углеводного компонента. Они тоньше коллагеновых, имеют слабо выраженную поперечную исчерченность. Разветвляясь и анастомозируя, они образуют мелкопетлистые сети, откуда и происходит их название. В ретикулярных волокнах в отличие от коллагеновых более выражен углеводный компонент, который хорошо выявляется солями азотнокислого серебра, поэтому эти волокна называют еще аргирофильными. Следует помнить, что аргирофильными свойствами обладают и незрелые коллагеновые волокна, состоящие из белка преколлагена. По своим физическим свойствам ретикулярные волокна занимают промежуточное положение между коллагеновыми и эластическими. Они образуются за счет деятельности ретикулярных клеток. Локализуются в основном в кроветворных органах, составляя их строму.Классификация соединительных тканей.Функции соединительных тканей:1) трофическая (метаболическая);2) опорная;3) защитная (механическая и имунная);4) структурная (пластическая);5) терморегуляторная;6) регенеративная;7) запасающая и др.Виды соединительной ткани различаются между собой составом и соотношением клеток, волокон, а также физико-химическими свойствами аморфного межклеточного вещества. Соединительные ткани подразделяются на собственно соединительную ткань (волокнистые соединительные ткани и соединительные ткани со специальными свойствами) и скелетные ткани. Разновидности скелетных ткане: три вида хрящевой ткани (гиалиновая, эластическая, волокнистая), две вида костной ткани (фиброзно-волокнистая и пластинчатая), а также цемент и дентин зуба (рис. 2). Рис. 2. Классификация соединительных тканей.Межклеточное вещество соединительных тканей состоит из волокон и основного аморфного вещества (неволокнистый компонент). Волокна могут быть коллагеновыми, эластическими и ретикулярными. Очевидно, что соединительная ткань образована тремя компонентами: клетки, волокна, основное аморфное вещество.Этапы развития зародышаЭмбриональное развитие - это цепь взаимосвязанных превращений, в результате которых из одноклеточной зиготы образуется многоклеточный организм, способный существовать во внешней среде. В эмбриогенезе, как части онтогенеза, находят свое отражение и процессы филогенеза. Филогенез - это историческое развитие вида от простых форм к сложным. Онтогенез - индивидуальное развитие конкретного организма. Согласно биогенетическому закону онтогенез является краткой формой филогенеза, а поэтому у представителей разных классов животных имеются общие этапы эмбрионального развития:1. Оплодотворение и образование зиготы;2. Дробление зиготы и формирование бластулы;3. Гаструляция и появление двух зародышевых листков (эктодермы и энтодермы);4. Дифференциация экто - и энтодермы с появлением третьего зародышевого листка - мезодермы, осевых органов (хорды, нервной трубки и первичной кишки) и дальнейшими процессами органогенеза и гистогенеза (развитие органов и тканей).Оплодотворение - это процесс взаимной ассимиляции яйцеклетки и сперматозоида, при котором возникает одноклеточный организм - зигота, совмещающий две наследственные информации.Дробление зиготы - это многократное деление зиготы путем митоза без роста образующихся бластомеров. Так формируется простейший многоклеточный организм - бластула. Различаем:- полное, или голобластическое, дробление, при котором вся зигота дробится на бластомеры (ланцетник, амфибии, млекопитающие);- неполное, или меробластическое, если только часть зиготы (анимальный полюс) подвергается дроблению (птицы).Полное дробление, в свою очередь, бывает:- равномерным - образуются бластомеры относительно равной величины (ланцетник) с синхронным их делением;- неравномерным - при асинхронном делении с образованием бластомеров разной величины и формы (амфибии, млекопитающие, птицы).Гаструляция - этап формирования двухслойного зародыша. Его поверхностный клеточный слой называется наружным зародышевым листком - эктодермой, а глубокий клеточный слой - внутренним зародышевым листком - энтодермой.Типы гаструляции:1. инвагинация - впячивание бластомеров дна бластулы в направлении крыши (ланцетник);2. эпиболия - обрастание быстро делящимися мелкими бластомерами крыши бластулы ее краевых зон и дна (амфибии);3. деляминация - расслоение бластомеров и миграция - перемещение клеток (птицы, млекопитающие).Дифференцировка зародышевых листков приводит к появлению разнокачественных клеток, дающих зачатки различных тканей и органов. У всех классов животных вначале возникают осевые органы - нервная трубка, хорда, первичная кишка - и третий (по положению средний) зародышевый листок - мезодерма.Особенности эмбрионального развития млекопитающих (образование трофобласта и плодных оболочек)Особенности эмбриогенеза млекопитающих определяются внутриутробным характером развития, вследствие чего:1. Яйцеклетка не накапливает больших запасов желтка (олиголецитальный тип).2. Оплодотворение внутреннее.3. На этапе полного неравномерного дробления зиготы происходит ранняя дифференциация бластомеров. Одни из них делятся быстрее, характеризуются светлой окраской и мелкими размерами, другие - темной окраской и крупной величиной, так как эти бластомеры запаздывают с делением и дробятся реже. Светлые бластомеры постепенно обволакивают медленно делящиеся темные, в силу чего формируется шаровидная бластула без полости (морула). В моруле темные бластомеры составляют внутреннее ее содержимое в виде плотного узелка клеток, которые в дальнейшем используются на построение тела зародыша - это эмбриобласт.Светлые бластомеры расположены вокруг эмбриобласта в один слой. Их задачей является всасывание секрета маточных желез (маточное молочко) для обеспечения процессов питания зародыша до сформирования плацентарной связи с организмом матери. Поэтому они образуют трофобласт.4. Накопление маточного молочка в бластуле оттесняет эмбриобласт кверху и делает его похожим на дискобластулу птиц. Теперь зародыш представляет зародышевый пузырек, или бластоцисту. Как следствие, все дальнейшие процессы развития у млекопитающих повторяют уже известные пути, свойственные эмбриогенезу птиц: гаструляция осуществляется путем деляминации и миграции; формирование осевых органов и мезодермы происходит при участии первичной полоски и узелка, а обособление тела и образование плодных оболочек - туловищной и амниотической складок.Туловищная складка формируется вследствие активного размножения клеток всех трех зародышевых листков в зонах, окаймляющих зародышевый щиток. Бурный прирост клеток вынуждает их смещаться внутрь и изгибать листки. По мере углубления туловищной складки ее диаметр уменьшается, она все больше обособляет и округляет зародыш, формируя одновременно из энтодермы и висцерального листка мезодермы первичную кишку и желточный мешок с заключенным в нем маточным молочком.Периферические части эктодермы и париетального листка мезодермы образуют амниотическую круговую складку, края которой постепенно надвигаются над обособляющимся туловищем и полностью смыкаются над ним. Срастание внутренних листков складки формирует внутреннюю водную оболочку - амнион, полость которой заполняется амниотической жидкостью. Сращение наружных листков амниотической складки обеспечивает формирование самой наружной оболочки плода - хориона (ворсинчатая оболочка).За счет слепого выпячивания через пупочный канал вентральной стенки первичной кишки образуется средняя оболочка - аллантоис, в котором развивается система кровеносных сосудов (сосудистая оболочка).5. Наружная оболочка - хорион имеет особенно сложное строение и образует множественные выпячивания в форме ворсинок, с помощью которых устанавливается тесная взаимосвязь со слизистой оболочкой матки. В состав ворсинок входят участки срастающегося с хорионом аллантоиса с кровеносными сосудами и трофобласт, клетки которого вырабатывают гормоны для поддержания нормального течения беременности.6. Совокупность ворсинок аллантохориона и структур эндометрия, с которыми они взаимодействуют, формируют у млекопитающих особый эмбриональный орган - плаценту. Плацента обеспечивает питание зародыша, его газообмен, удаление продуктов метаболизма, надежную защиту от неблагоприятных факторов любой этиологии и гормональную регуляцию развития.Аморфный компонент межклеточного веществаАморфный компонент или основное вещество - составляет около 20% массы тела и представляет студнеобразную гидрофильную среду непостоянной плотности и химического составаВ образовании основного вещества основную роль играют фибробласты .Химический состав : вода, белки, полисахариды, минеральные вещества Полисахариды представлены - гликозаминогликанами, которые бывают 2-х видов:а) сульфатированные - гепаринсульфат, хондроитин - 4 - сульфат, хондроитин - 6 - сульфат, дерматансульфат .б) несульфатированные - гиалуроновая кислота .Количество основного вещества в различных участках соединительной ткани неодинаково. Около капилляров и мелких сосудов. В участках, содержащих жировые прослойки, основного вещества мало, а на границах с тканями другого происхождения, например, с эпителием, его много .В детском возрасте основного вещества больше ,чем во взрослом и пожилом Функции - аморфный компонент межклеточного вещества участвует в метаболизме воды, регуляции ионного состава , в связывании клеток и волокон, адгезии клеток и др.Физико - химическое состояние межклеточного вещества в значительной мере определяет функциональные особенности соединительной ткани. Чем плотнее межклеточное вещество, тем сильнее выражена механическая и опорная функции. Трофическая функция напротив, лучше обеспечивается полужидким по консистенции межклеточным веществом, благодаря протеогликанам аморфного компонента межклеточного вещества, обладающим гидрофильностью. Под влиянием эндогенного и экзогенного гистамина и гиалуронидазы происходит повышение проницаемости аморфного компонента межклеточного вещества. Повышение концентрации гликозаминогликанов, снижение активности гиалуронидазы, напротив, понижают его проницаемость.Плотная волокнистая соединительная тканьЭто ткань, для которой характерным является большое количество плотно расположенных волокон и незначительное количество клеточных элементов и основного аморфного вещества между ними .В зависимости от расположения волокнистых структур эта ткань делится на :1) плотную неоформленную ;2) плотную оформленную;Плотная неоформленная соединительная ткань характеризуется разным направлением волокон и образует сетчатый слой дермы кожи . В его составе толстые пучки коллагеновых волокон идут в разных направлениях , образуя сетку . Это обеспечивает резистентность кожи при самых разнообразных направлениях действия механических факторов. Между пучками коллагеновых волокон расположены фибробласты и макрофаги , сосудисто-нервные сплетения и основное межклеточное вещество.Плотная оформленная соединительная ткань характеризуется параллельным и строго упорядоченным направлением волокон. Эта ткань входит в состав фиброзных мембран, связок, сухожилий .Последние соединяют мышцы с костями и подвергаются действию векторных сил в одном направлении .Сухожилие (tendo) - состоит из толстых, плотно лежащих пучков коллагеновых волокон, между которыми располагаются фиброциты и небольшие количества фибробластов и основного аморфного вещества.Тонкие пластинчатые отростки фиброцитов входят в промежутки между пучками волокон и тесно соприкасаются с ними. Фиброциты часто называют сухожильными клетками (tendinocyti) .Каждый пучок коллагеновых волокон, отделенный от соседнего слоем фиброцитов называется пучком первого порядкаНесколько пучков первого порядка, окруженных тонкими прослойками рыхлой волокнистой соединительной ткани образуют - пучки второго порядка . Прослойка рыхлой волокнистой соединительной ткани вокруг пучков порядканосит название - эндотеноний .Пучки второго порядка образуют пучки третьего порядка , разделенные более толстыми прослойками рыхлой волокнистой соединительной ткани, которая называется - перитеноний . Иногда пучком третьего порядка является само сухожилие . В крупных сухожилиях могут быть и пучки четвертого порядка.В эндотенонии и перитенонии проходят кровеносные сосуды, питающие сухожилие, нервы, проприоцептивные нервные окончания, посылающие в центральную нервную систему сигналы о состоянии натяжения сухожилий .Фиброзные мембраны. К этой разновидности плотной соединительной ткани относят фасции, апоневрозы, сухожильные центры, диафрагмы, капсулы некоторых органов, твердую мозговую оболочку, склеру, надхрящницу, надкостницу, белочную оболочку яичника и яичка .Пучки коллагеновых волокон и лежащие между ними фибробласты и фиброциты располагаются в определенном порядке в несколько слоевВ каждом слое волнообразно изогнутые пучки коллагеновых волокон идут параллельно друг другу в одном направлении. Направление волокон одного слоя не совпадает с направлением другого. Отдельные пучки волокон могут переходить из одного слоя в другой, связывая их между собой. Кроме коллагеновых волокон фиброзные мембраны имеют эластические волокна.
Заключение
Изучив данный материал, мы поняли всю важность изучения этих фундаментальных наук, как гистология, цитология и эмбриология.Основной задачей гистологии, как и других биологических наук, является выявление сущности жизни, структурной организации процессов жизнедеятельности для целенаправленного воздействия на них, что очень важно для врачебной практики. Исходя из основной задачи, гистология исследует закономерности образования, механизмы регуляции процессов морфогенеза тканей и роль в этих процессах нервной, эндокринной и иммунной систем. Важнейшими задачами, решаемыми гистологией, являются изучение клеточной и тканевой совместимости при переливании крови, трансплантации тканей и органов. Гистология тесно связана с другими медико-биологическими науками – биологией, анатомией, физиологией, биохимией, патологической анатомией и клиническими дисциплинами. Кроме того, современная гистология в большой степени использует достижения физики, химии, математики, кибернетики, что обусловливает ее тесную связь с этими науками.В истории развития гистологии существует три этапа: домикроскопический период, микроскопический и современный.
Список литературы
Ю.И Афанасьев, , Н. А. Юрина Гистология: Учебник. – М.: Гэотар Медиа, 2012 . – 800с.(37-50с)Атлас по гистологии, цитологии и эмбриологии: учебное пособие /Кузнецов С.Л., Мушкамбаров Н.Н., Горячкина В.Л.- М.: МИА, 2002.Терминологический словарь по цитологии, гистологии и эмбриологии / Ю.И. Афанасьев, К.К. Рогажинская, Р.П. Самусев и др. Под ред. Ю.И. Афанасьева и С.Л. Кузнецова. – М.: ООО «Издательство Новая Волна», 2002.Акаевский А.И. Анатомия домашних животных / А.И. Акаевский, Ю.Ф. Юдичев, С.Б. Селезнев. — М.: Аквариум-Принт, 2009.Луговская С.А. Гематологический атлас / С.А. Луговская, М.Е. Почтарь — М.: Триада, 2008.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнить курсовой по Транспортной логистике. С-07082
Курсовая, Транспортная логистика
Срок сдачи к 14 дек.
Роль волонтеров в мероприятиях туристской направленности
Курсовая, Координация работы служб туризма и гостеприимства
Срок сдачи к 13 дек.
Контрольная работа
Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления
Срок сдачи к 30 дек.
Написать курсовую по теме: Нематериальные активы и их роль в деятельности предприятия.
Курсовая, Экономика организации
Срок сдачи к 14 дек.
написать доклад на тему: Процесс планирования персонала проекта.
Доклад, Управение проектами
Срок сдачи к 13 дек.
Заполните форму и узнайте цену на индивидуальную работу!