это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
4365265
Ознакомительный фрагмент работы:
ВВЕДЕНИЕ
Распознавание текста — это механический или электронный перевод различных текста в последовательность кодов, которые используются для представления в текстовом редакторе. Это широко используется для конвертации книг и документов в электронный вид, для автоматизации систем учета в бизнесе или для публикации текста на веб-странице. Оптическое распознавание текста позволяет редактировать текст, осуществлять поиск слова или фразы, хранить его в более компактной форме, демонстрировать или распечатывать материал, не теряя качества, анализировать информацию, а также применять к тесту электронный перевод, форматирование или преобразование в речь. Оптическое распознавание текста является исследуемой проблемой в областях распознавания образов, искусственного интеллекта и компьютерного зрения.
Так же – это способность компьютера получать и интерпретировать интеллектуальный рукописный ввод. Распознавание текста может производиться «оффлайновым» методом из уже написанного на бумаге текста или «онлайновым» методом считыванием движений кончика ручки, к примеру по поверхности специального компьютерного экрана.Оффлайновый вид распознавания успешно применяется в сферах деятельности, где необходимо обрабатывать большое количество рукописных документов, к примеру, в страховых компаниях. Качество распознавания можно повысить, используя структурированные документы (формы). Кроме того, можно улучшить качество, уменьшив диапазон возможных вводимых символов. Оффлайновое распознавание считается более сложным по сравнению с онлайновым.Точное распознавание латинских символов в печатном тексте в настоящее время возможно только если доступны чёткие изображения, такие как сканированные печатные документы. Точность при такой постановке задачи превышает 99%, абсолютная точность может быть достигнута только путем последующего редактирования человеком.
Проблемы распознавания рукописного «печатного» и стандартного рукописного текста, а также печатных текстов других форматов (особенно с очень большим числом символов) в настоящее время являются предметом активных исследований.Широко исследуемой проблемой является распознавание рукописного текста. На данный момент достигнутая точность даже ниже, чем для рукописного «печатного» текста. Более высокие показатели могут быть достигнуты только с использованием контекстной и грамматической информации. Например, в процессе распознания искать целые слова в словаре легче, чем пытаться проанализировать отдельные символы из текста. Знание грамматики языка может также помочь определить, является ли слово глаголом или существительным. Формы отдельных рукописных символов иногда могут не содержать достаточно информации, чтобы точно (более 98 %) распознать весь рукописный текст.
Методы автоматического распознавания образов и их реализация в системах оптического чтения текстов (OCR-системах – Optical Character Recognition) – одна из самых плодотворных технологий ИИ.В приведенной трактовке OCR понимается как автоматическое распознавание с помощью специальных программ изображений символов печатного или рукописного текста (например, введенного в компьютер с помощью сканера) и преобразование его в формат, пригодный для обработки текстовыми процессорами, редакторами текстов и т. д.
1 ИСТОРИЯ СОЗДАНИЯ
2 АНАЛИЗ ПОДХОДОВ К ПРОЕКТИРОВАНИЮ СИСТЕМ ОПТИЧЕСКОГО ЧТЕНИЯ ТЕКСТОВ
3 МЕТОДЫ ОПТИМИЗАЦИИ РАСПОЗНАВАНИЯ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
Основные источники:Абраменко А. Принципы распознавания / А. Абраменко – K:.Компьютер–пресс, 1997 – 123 с.Research Library – статья по искусственному интеллекту.Шамис А.Л. Принципы интеллектуализации автоматического распознавания / А.Л. Шамис – K:.2000 – 312 с.StatSoft – сайт, посвященный нейронным сетям.Шлезингер М., Главач В. Десять лекций по статистическому и структурному распознавани / М. Шлезингер, В. Главач – М.:2004 – 112 c.Гаврилов Г.П. Логический подход к искусственному интеллекту / Г.П. Гаврилов – М.: Мир, 1998 – 256 с.Кучуганов А.В. , Лапинская Г.В. Распознавание рукописных текстов / А.В. Кучуганов, Г.В. Лапинская – Ижевск:.Мир, 2006 – 514 с.Шлезингер М., Главач В. Структурное распознавание / М. Шлезингер , В. Главач – Киев: Наукова думка, 2006 – 300 с.Интернет-ресурсы:Электронный ресурс: Википедия Российское образование. Федеральный портал. Форма доступа: http:// www.edu.ru/fasi.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Требуется разобрать ст. 135 Налогового кодекса по составу напогового...
Решение задач, Налоговое право
Срок сдачи к 5 дек.
Школьный кабинет химии и его роль в химико-образовательном процессе
Курсовая, Методика преподавания химии
Срок сдачи к 26 дек.
Реферат по теме «общественное мнение как объект манипулятивного воздействий. интерпретация общественного мнения по п. бурдьё»
Реферат, Социология
Срок сдачи к 9 дек.
Выполнить курсовую работу. Образовательные стандарты и программы. Е-01220
Курсовая, Английский язык
Срок сдачи к 10 дек.
Изложение темы: экзистенциализм. основные идеи с. кьеркегора.
Реферат, Философия
Срок сдачи к 12 дек.
Заполните форму и узнайте цену на индивидуальную работу!