Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Виды и классификация турбогенераторов

Тип Реферат
Предмет Общая энергетика

ID (номер) заказа
5187868

200 руб.

Просмотров
699
Размер файла
95.55 Кб
Поделиться

Ознакомительный фрагмент работы:

Введение
Потребление энергии является обязательным условием существования человечества. Наличие доступной для потребления энергии всегда было необходимо для удовлетворения потребностей человека, увеличения продолжительности и улучшения условий его жизни.История цивилизации — история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном итоге увеличения энергопотребления.Первый скачок в росте энергопотребления произошел, когда человек научился добывать огонь и использовать его для приготовления пищи и обогрева своих жилищ. Источниками энергии в этот период служили дрова и мускульная сила человека. Следующий важный этап связан с изобретением колеса, созданием разнообразных орудий труда, развитием кузнечного производства. К XV в. средневековый человек, используя рабочий скот, энергию воды и ветра, дрова и небольшое количество угля, уже потреблял приблизительно в 10 раз больше, чем первобытный человек. Особенно заметное увеличение мирового потребления энергии произошло за последние 200 лет, прошедшие с начала индустриальной эпохи, — оно возросло в 30 раз и достигло в 2001 г. 14,3 Гт у.т/год. Человек индустриального общества потребляет в 100 раз больше энергии, чем первобытный человек, и живет в 4 раза дольше.В современном мире энергетика является основой развития базовых отраслей промышленности, определяющих прогресс общественного производства. Во всех промышленно развитых странах темпы развития энергетики опережали темпы развития других отраслей.В то же время энергетика — один из источников неблагоприятного воздействия на окружающую среду и человека. Она влияет на атмосферу, гидросферу, биосферу и на литосферу.Электрическая станция – энергетическая установка, служащая для преобразования какого-либо энергии в электрическую. Тип электрической станции определяется, прежде всего, видом энергоносителя. Наибольшее распространение получили тепловые электрические станции (ТЭС), на которых используется тепловая энергия, выделяемая при сжигании органического топлива (уголь, нефть, газ и др.). На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.Виды и классификация турбогенераторов Турбогенераторы предназначены для выработки электроэнергии в продолжительном номинальном режиме работы при непосредственном соединении с паровыми или газовыми турбинами. Турбогенераторы устанавливаются на тепловых и атомных электростанциях.В зависимости от мощности турбогенераторы подразделяются на три основные группы: мощностью 2,5-32 МВт, 60-320 МВт и свыше 500 МВт. По частоте вращения различают турбогенераторы четырех-полюсные (на частоту вращения 1500 и 1800 об/мин) и двухполюсные (на частоту вращения 3000 и 3600 об/мин) соответственно на частоты сети 50 и 60 Гц.По виду приводной турбины турбогенераторы классифицируются на генераторы, приводимые во вращение паровой турбиной, и генераторы с приводом от газовой турбины.По системе охлаждения турбогенераторы подразделяются на машины с воздушным, с косвенным водородным, непосредственным водородным и жидкостным охлаждением.По применяемой системе возбуждения турбогенераторы классифицируются на машины со статической системой самовозбуждения, независимой тиристорной системой возбуждения и бесщеточным возбуждением.Турбогенераторы с воздушным охлаждением серии Т.Турбогенераторы с воздушным охлаждением (серии Т) выпускаются мощностью 2,5; 4, 6, 12 и 20 МВт (табл. 8.1). Генераторы мощностью 2,5 — 12 МВт имеют косвенное воздушное охлаждение активных частей, генераторы мощностью 20 МВт — непосредственное воздушное охлаждение обмотки ротора и косвенное воздушное охлаждение других активных частей.  Турбогенераторы мощностью 2,5 — 12 МВт выполняются на фундаментных плитах с одним стояковым изолированным подшипником, с одним свободным концом вала. Турбогенератор типа Т-20-2 выполняется сдвумя стояковыми подшипниками. Турбогенераторы имеют закрытое исполнение, обеспечивающее систему самовентиляции по замкнутому циклу. Машины типов Т-2,5-2, Т-4-2, Т-6-2, Т-12-2 имеют горизонтальные газоохладители, расположенные по бокам статора на фундаментной плите. В турбогенераторе типа Т-20-2 используются шесть вертикально расположенных газоохладителей. Газоохладители имеют амортизационные подвески.Турбогенераторы с водородным охлаждением серии ТВФ.  В серию ТВФ входят турбогенераторы мощностью 63, 100 и ПО МВт. Турбогенераторы имеют непосредственное форсированное охлаждение обмотки ротора водородом и косвенное водородное охлаждение обмотки статора.  Турбогенераторы с водородно-водяным охлаждением серии ТВВ  В серию ТВВ входят турбогенераторы мощностью 160, 200, 220, 300, 500, 800, 1000 и 1200 МВт на 3000 об/мин и турбогенераторы мощностью 1000 МВт на 1500 об/мин.  Турбогенераторы имеют непосредственное охлаждение обмотки статора дистиллированной водой, непосредственное форсированное охлаждение обмотки ротора водородом, внешней поверхности ротора и сердечника статора — водородом.  Турбогенераторы с водородно-водяным охлаждением серии ТВВ.  В серию ТВВ входят турбогенераторы мощностью 160, 200, 220, 300, 500, 800, 1000 и 1200 МВт на 3000 об/мин и турбогенераторы мощностью 1000 МВт на 1500 об/мин.  Турбогенераторы имеют непосредственное охлаждение обмотки статора дистиллированной водой, непосредственное форсированное охлаждение обмотки ротора водородом, внешней поверхности ротора и сердечника статора — водородом.  Турбогенераторы с полным водяным охлаждением ТЗВ.  Производственное объединение «Электросила» серийно изготовляет турбогенераторы с полным водяным охлаждением типа ТЗВ-800-2УЗ мощностью 800 МВт, 3000 об/мин  В турбогенераторе типа ТЗВ-800-2 обмотки статора и ротора охлаждаются непосредственно водой, протекающей по каналам трубчатых медных проводников. Активная сталь сердечника статора охлаждается охладителями из силумина, запрессованными между пакетами. Сталь ротора и воздух, заполняющий генератор, охлаждаются в основном водоохлаждаемой демпферной обмоткой ротора.  Турбогенераторы серии ТГВ и ТВМ.  В серию ТГВ входят турбогенераторы мощностью 200, 300 и 500 МВ. Корпус статора — цилиндрический, сварной, газоплотный. Турбогенераторы мощностью 200 и 300 МВт выполнены в однокорпусном исполнении. Корпус статора турбогенератора мощностью 500 МВТ состоит из трех частей - центральной и двух приставных с торцов коробов. Корпус статора заполнен водородом под давлением.  Сердечник статора собран на продольные призмы. Для снижения вибрации внутренний корпус устанавливается в корпусе статора на пластинчатых пружинах, расположенных в несколько рядов по длине машины. Сердечник состоит из отдельных пакетов, разделенных кольцевыми радиальными каналами.  В серию ТВМ входят турбогенераторы мощностью 300 и 500 МВт (см. табл. 8.5). Турбогенераторы имеют масляное охлаждение обмотки и сердечника статора и водяное ротора.  Основные характеристики турбин определяются ГОСТ 3618-82 Турбины паровые стационарные для привода турбогенераторов. Типы и основные параметры.  Основные технические требования к этим турбинам, кроме того, сформулированы ГОСТ 24277-85--ГОСТ 24279-85 Турбины паровые стационарные конденсационные и теплофикационные. Общие технические требования.  В ГОСТ 3618-82 перечисляются следующие типы турбин: К - конденсационные;  П- теплофикационные с производственным отбором пара;  Т - теплофикационные с отопительным отбором пара; ПТ - теплофикационные с производственным и отопительным отборами пара;  Р - с противодавлением, без регулируемого отбора пара;  ПР - теплофикационные с противодавлением и с производственным отбором пара;  ТР - теплофикационные с противодавлением и с отопительным отбором пара.  Кроме того, применяются следующие обозначения турбин:  ТК - теплофикационные с отопительным отбором пара, но с гак называемой большой привязанной конденсационной мощностью;  КТ - теплофикационные с отопительными отборами нерегулируемого давления.  После буквенного обозначения типа турбины указывается электрическая мощность в МВт (иногда в виде дроби: в числителе — номинальная, а в знаменателе - максимальная мощность). Далее указывается начальное давление в МПа. Часто в обозначениях это давление приводится в кгс/см2.  При поставках турбин в страны, где частота сети 60 Гц, аналогично приводится частота вращения ротора турбины и для ТЭС, и для ТЭЦ, и для АЭС— 60 1/с (или 3600 об/мин). Последним в обозначении указывается номер модификации турбины.  Примеры обозначений:  К-800-23,5-5 (или К-800-240-5)— конденсационная турбина номинальной мощностью 800 МВт на начальное давление 23,5 МПа (240 кгс/см2), пятой модификации;  ПТ-140/165-12,8/1,5-2 (или ПТ-140/165-130/15-2)--теплофикационная турбина с производственным и отопительным отборами, номинальной мощностью 140 М Вт, максимальной мощностью 165 МВт па начальное давление 12,8 МПа (130 кгс/см2), давление производственного отбора 1,5 МПа (15 кгс/см2), второй модификации;  КТ-1070-5,9/25-3 (или КТ-1070-60/1500-3) - теплофикационная турбина (для АЭС с реакторами ВВЭР) мощностью 1070 МВт на начальное давление 5,9 МПа (60 кгс/см2) с большими отопительными отборами нерегулируемого давления, на частоту вращения 25 1 /с (1500 об/мин), третьей модификации.  Крупные конденсационные энергоблоки сверхкритического давления изготавливаются на 23,5 МПа и 540/540 С, начиная от мощности 300 МВт; при тех же параметрах производится теплофикационная турбина Т-250/300-23,5 поминальной мощностью 250 МВт.  В ГОСТ 3618-82 для ряда типоразмеров турбин указаны максимальные мощности, номинальные противодавления и давления регулируемого отбора; для турбин типа Т, ПТ, П, ПР - номинальный расход отбираемого пара. Кроме того, для всех турбин (кроме типа Р и ПР) указана температура охлаждающей воды, для конденсационных турбин равная 12 и 15° С, для теплофикационных — 20 и 27е С, а также температура питательной воды.В стандарте дается пояснение основных терминов, характеризующих типоразмеры турбин. Номинальной мощностью конденсационных турбин называется мощность, которую турбина должна длительно развивать на клеммах турбогенератора при номинальных значениях всех других основных параметров и при использовании нерегулируемых отборов пара для постоянных собственных нужд энергоблока. Для теплофикационных турбин номинальная мощность обеспечивается без этого последнего условия. Максимальная мощность теплофикационных турбин должна обеспечиваться при конденсационном режиме или при определенных соотношениях расходов отбираемого пара и давлений пара в отборах или противодавлении при номинальных значениях других основных параметров.  Начальными параметрами являются параметры свежего пара перед стопорным клапаном турбины, а температура промперегрева относится к пару перед стопорным клапаном цилиндра среднего (низкого) давления турбины. Давление пара в отборе измеряется в отборном патрубке турбины. ГОСТ 3618-82 даются указания о допустимом и предусматриваемом при проектировании турбины отклонении начальных параметров и температуры промперегрева, пределах регулирования давления регулируемого отбора и противодавления и ряд других требований.  Для турбин типа Т, П и ПТ указаны удельный расход пара при теплофикационном режиме; для турбин типа Р, ПР и ТР - удельные расходы пара. Здесь под удельным расходом теплоты брутто понимается расход теплоты, отнесенный к сумме мощностей турбогенератора и турбинного привода питательных насосов. Также подсчитывается удельный расход пара, регламентируемый ГОСТ.Системы возбуждения генераторовСистемы возбуждения относятся к числу наиболее ответственных элементов генератора. Несмотря на то, что относительная мощность возбудителей невелика и составляет всего 0,4—0,6 % мощности генераторов, их характеристики существенно влияют как на устойчивость работы генераторов, так и на устойчивость двигательной нагрузки собственных нужд электростанции. Последнее очень существенно для обеспечения устойчивости технологического режима мощных блочных станций.Системы возбуждения должны отвечать следующим общим требованиям: беспечивать надежное питание обмотки возбуждения синхронного генератора в нормальных и аварийных режимах;допускать регулирование напряжения возбуждения в заданных пределах; обеспечивать быстродействующее автоматическое регулирование возбуждения с высокими кратностями форсирования в аварийных режимах; осуществлять быстрое развозбуждение и в случае необходимости производить гашение поля в аварийных режимах.Быстродействие системы возбуждения определяется кратностью форсирования = UBm/UB_H (отношение максимального напряжения возбуждения к его номинальному значению) и скоростью нарастания напряжения возбудителя (с-1) при форсировании где тх — время нарастания напряжения возбудителя от номинального Системы возбуждения подразделяются на электромашинные и вентильные. В электромашинной системе возбуждения источником постоянного тока является вспомогательный генератор постоянного тока - возбудитель, непосредственно связанный с валом главного синхронного генератора или приводимый независимым двигателем, синхронным или асинхронным. В вентильной системе источником выпрямленного тока являются ртутные или полупроводниковые вентили, получающие питание от вспомогательного или главного синхронного генератора.В зависимости от источника энергии, используемого для возбуждения, все системы разделяются на системы независимого возбуждения и самовозбуждения. Преимущественное применение нашли схемы независимого возбуждения, в которых используется механическая энергия на валу возбуждаемой синхронной машины. В этом случае возбудитель не связан с сетью системы и возбуждение может осуществляться независимо от режима ее работы. Здесь в качестве возбудителя используется генератор постоянного тока или генератор переменного тока в сочетании в вентильными выпрямителями.При самовозбуждении используется энергия, вырабатываемая возбуждаемой машиной или получаемая из сети. В качестве возбудителя используется генератор постоянного тока или вентильные выпрямители До недавнего времени у генераторов всех типов наибольшее распространение имела электромашинная система возбуждения с генератором постоянного тока, непосредственно соединенным с валом основной машины. Предельная мощность электромашинных возбудителей при частоте вращения 3000 об/мин составляет 500 кВт. Этого достаточно лишь для возбуждения турбогенераторов с косвенным охлаждением мощностью до 150 МВт и турбогенераторов с непосредственным охлаждением до 100 МВт. Уменьшение частоты вращения до 750 об/мин позволяет повысить предельную мощность возбудителей до 3 МВт, но требует редуктора, что снижает надежность и увеличивает габариты машинного зала. По этой причине электромашинная система возбуждения с редуктором нашла у нас применение лишь на нескольких турбогенераторах мощностью 300 МВт (ТГВ-300 и ТВМ-300).Электромашинные системы возбуждения снабжаются автоматическим регулятором в виде устройства компаундирования с корректором напряжения, но быстродействие их по сравнению с другими системами является невысоким (кф = 2, постоянная времени возбудителя Тв = 0,3ч-6,0 с). Поэтому такие системы могут быть применены лишь для возбуждения турбогенераторов, к которым не предъявляют повышенных требований в отношении устойчивости.В настоящее время электромашинные возбудители применяют только на турбогенераторах мощностью до 100 МВт, на гидрогенераторах небольшой мощности и в качестве резервных возбудителей, в том числе и для генераторов с вентильными системами возбуждения.Рисунок 3 - Электромашинная система возбуждения с генератором постоянного тока: а — с самовозбуждением возбудителя; б — с подвозбудителем I — синхронный генератор; 2 — обмотка возбуждения генератора; 3 — автомат гашения поля; 4 — дугогасительная решетка; 5 — возбудитель; 6 — обмотка возбуждения возбудителя; 7 — подвозбудительДля генераторов больших мощностей применяются вентильные системы возбуждения о неуправляемыми или управляемыми вентилями .Полупроводниковая система возбуждения с высокочастотным возбудителем является основной для турбогенераторов серии ТВВ мощностью 165, 200, -300 и 500 МВт. Высокочастотный возбудитель представляет собой сильно компаундированную индукторную машину, возбуждение которой определяется в основном обмоткой: самовозбуждения, включенной последовательно с обмоткой ротора генератора. Рисунок 4 - Высокочастотная система возбуждения с неуправляемыми полупроводниковыми выпрямителями 1 — синхронный генератор; 2 — обмотка возбуждения генератора (ОВГ); 3 — автомат гашения поля (АГП); 4 — выпрямительное устройство; 5 — высокочастотный возбудитель; 6, 7 — последовательная (ОПВ) и независимые (ОНВ) обмотки возбуждения высокочастотного возбудителя (ВЧВ); 8 — высокочастотный подвозбудитель (Г1В); 9 — выпрямитель (В); 10, 11 — магнитные усилители (МУ) бесконтактной форсировки и автоматического регулятора возбуждения (APB); Р — разрядникРисунок 5 - Независимая система возбуждения с управляемыми вентилями1 — синхронный генератор; 2 — обмотка возбуждения; 3 — возбудитель — вспомогательный генератор с двумя обмоткам и на статоре; 4 — обмотка возбуждения возбудителя; 5 подвозбудитель; 6 -  обмотка возбуждения подвозбудителя; 7, 8 — форсировочная и рабочая группы управляемых вентилейРисунок 6 - Бесконтактная система возбуждения: 1 - синхронный генератор; 2 — обмотка возбуждения; 3 — вращающиеся полупроводниковые выпрямители, 4 — высокочастотный возбудитель (обращенная индукторная машина); 5 — обмотка возбуждения возбудителя; 6 — высокочастотный подвозбудитель; 7 — выпрямитель; 8 — магнитный усилитель цепи возбуждения подвозбудителяПри переходных процессах свободный ток ротора, протекая по обмотке самовозбуждения, создает необходимый компаундирующий эффект.Устойчивость работы и регулирование обеспечиваются устройствами автоматического регулирования возбуждения (АРВ) и бесконтактной форсировки (УБФ), включенными на одинаковые независимые обмотки возбуждения высокочастотного возбудителя и представляющими собой двухсистемный корректор. УБФ получает питание от статорной обмотки высокочастотного возбудителя, а устройство АРВ—от высокочастотного подвозбудителя. Подвозбудитель (машина с постоянными магнитами) находится на одном валу с возбудителем и основным генератором.Рисунок 7 - Схема самовозбуждения с управляемыми вентилям1 - синхронный генератор; 2 — обмотка возбуждения; 3 — выпрямительный трансформатор; 4, 6 — рабочая и форсировочная группы управляемых вентилейРегулирование возбуждения осуществляется изменением токов в независимых обмотках возбуждения высокочастотного генератора. По своему быстродействию эта система превосходит электромашинную с генератором постоянного тока и обеспечивает скорость нарастания напряжения vy = 2-4 с-1.Существенного повышения быстродействия системы возбуждения можно достигнуть с помощью управляемых вентилей, ионных или тиристорных, преобразующих переменный ток вспомогательного синхронного генератора частотой 50 Гц в постоянный вспомогательный генератор имеет электромашинную систему возбуждения и при независимой системе располагается на одном валу с главным. При высокой кратности форсирования возбуждения (кф  > 2) обычно применяют две группы управляемых вентилей: рабочую и форсировочную. Обе группы выполняют по шести- или трехфазной мостовой схеме, соединяют параллельно и подключают к обмотке возбуждения генератора. Рабочая группа вентилей работает с малыми углами регулирования и обеспечивает возбуждение генератора в нормальных режимах. Форсировочная группа в нормальном режиме работает с большими углами регулирования и дает не более 30 % тока возбуждения. При форсировке эта группа полностью открывается и дает весь ток форсировки, а при гашении поля переводится в инверторный режим.Каждая фаза вспомогательного генератора выполняется из двух частей: низковольтной, к которой присоединены вентили рабочей группы, и высоковольтной — для питания вентилей форсировочной группы. Защита вентилей и вспомогательного генератора от токов при обратных зажиганиях (в случае ионных вентилей) осуществляется с помощью шестиполюсных быстродействующих анодных выключателей. Управление вентилями осуществляется от автоматического регулятора возбуждения.Вследствие безынерционности вентилей такая система возбуждения имеет малые постоянные времени (Тв < 0,02 с) и при высокой кратности форсирования (кф = 4) обеспечивает скорость нарастания напряжения возбудителя vy = 40 с-1. Независимая ионная система возбуждения применена на некоторых турбогенераторах серии ТГВ мощностью 300 и 500 МВт и целесообразна, когда генераторы работают на длинные линии электропередачи и расположены вблизи потребителей с резко переменной нагрузкой.Рассмотренные выше системы возбуждения называются контактными, так как обмотка возбуждения синхронного генератора соединяется здесь с возбудителем посредством контактных колец и щеток. В настоящее время для турбогенераторов мощностью 300 МВт и выше разработаны так называемые бесконтактные системы возбуждения с непосредственным соединением возбудителя и обмотки возбуждаемой машины (рис. 1-20). В этой схеме высокочастотный возбудитель имеет обращенное исполнение с размещением трехфазной обмотки на роторе, а обмотки возбуждения на статоре. Полупроводниковые неуправляемые вентили и индивидуальные предохранители встроены в барабан, расположенный между соединительной муфтой и якорем возбудителя. Число вентилей выбрано с запасом, чтобы при выходе из строя до 20 % их оставшиеся могли обеспечить возбуждение в режиме форсировки. Поскольку трехфазная обмотка возбудителя, выпрямители и обмотка возбуждения вращаются с одинаковой частотой, их можно соединить электрически без контактных колец и щеток. Регулирование напряжения возбудителя осуществляется автоматически от высокочастотного подвозбудителя.Бесконтактная схема существенно повышает надежность системы возбуждения и особенно перспективна для генераторов большой мощности с токами возбуждения 3 кА и выше. Так, подобная система установлена на крупнейшем в стране генераторе 1200 МВт, имеющем ток возбуждения более 7,5 кА (Костромская ГРЭС). Однако она не лишена некоторых недостатков, в частности, при этой системе гашение поля происходит сравнительно медленно, а из-за инерционности высокочастотного возбудителя не могут быть получены большие скорости повышения напряжения при форсировке. Следует также указать на невозможность работы на резервном возбуждении. Медленное гашение поля вызывается отсутствием размыкающих контактов в цепи обмотки возбуждения и осуществлением этого процесса через АГП возбудителя.Эти недостатки частично устранены в бесконтактной (бесщеточной) тиристорной системе возбуждения БТВУ-300, проходящей с 1981 года опытно-промышленную проверку на ряде ТЭС страны, и БТВ-500-4, установленной на одной из АЭС.Эти системы имеют следующие отличия от существующих:в них применен специальный вспомогательный шестнадцатифазный генератор с трапецеидальной э. д. с., обладающий повышенным быстродействием в диодном исполнении;импульсы управления вращающимися тиристорами создаются, формируются и смещаются по фазе при помощи бесконтактной системы управления, включающей в себя специальный многофазный генератор управляющих импульсов и синусно-косинусное устройство;комбинированный способ управления и регулирования в сочетании с высоким быстродействием возбудителя обеспечивает высокое быстродействие системы возбуждения во всех режимах;процесс гашения поля турбогенератора значительно убыстряется, так как в этой системе он осуществляется релейным переводом вращающегося выпрямителя в инверторный режим путем изменения угла регулирования от 38,9 до 137°.Бесщеточные возбудители подобного типа обладают высоким быстродействием при форсировке возбуждения. На блоках с турбогенераторами ТГВ-300 при двукратной форсировке возбудителя из номинального режима достигается скорость нарастания напряжения до 13Uв., ,/с, а на блоках с ТГВ-200 — до 20UB. и/с.Специальные испытания показали, что при мощности генератора, равной половине номинальной, асинхронный режим не опасен для тиристорной бесщеточной системы.Системы самовозбуждения обычно выполняются на базе статических преобразователей с управляемыми ртутными (ионное самовозбуждение) или полупроводниковыми вентилями. Система ионного самовозбуждения использована на турбогенераторах ТГВ-200 и некоторых машинах ТГВ-300, Выпрямительный трансформатор подключен ответвлением к генераторному токопроводу и имеет две вторичные обмотки, соединенные между собой уравнительным реактором. Каждая из обмоток имеет выводы высокого и низкого напряжения для подключения рабочей и форсировочной групп вентилей. Ионный возбудитель с автоматическим регулятором возбуждения сильного действия обеспечивает устойчивую работу возбуждения во всех режимах, если напряжение генератора выше 0,8f/n. Для самовозбуждения при более значительных снижениях напряжения в некоторых случаях применяют схему сильного компаундирования с дополнительным трансформатором, первичная обмотка которого включена последовательно в цепь каждой фазы генератора, а вторичная — последовательно со вторичной обмоткой выпрямительного трансформатора.Для резервного возбуждения турбогенераторов любых мощностей применяют систему самовозбуждения с генератором постоянного тока, приводимым во вращение асинхронным двигателем, получающим питание от шин собственных нужд станции. Мощность таких генераторов постоянного тока, выполненных на частоту вращения 750 об/мин, достигает 2 МВт, а перегрузочная мощность, рассчитанная на длительность форсировки до 30 с, колеблется в пределах 4—6 МВт. Для уменьшения влияния колебаний напряжения и частоты в системе на режим возбуждения синхронной машины применяют либо асинхронный двигатель с большим запасом по мощности, либо специальный маховик для увеличения механической инерции вращающихся масс. Динамические характеристики генератора при работе на резервном возбудителе хуже, чем при работе на основном. Обычно на два-четыре блока устанавливают один резервный возбудитель.Рисунок 8 - Схема реверсивного (бесконтактного) возбуждения синхронного компенсатора КСВБО1 — пусковой выключатель; 2 — рабочий выключатель; 3 — пусковой реактор: 4 — синхронный компенсатор КСВБО; 5 — выпрямители; 6 — обращенные синхронные генераторы-возбудители; 7 — возбудитель компенсатора в индуктивном режиме; 8 —  обмотки возбуждения обращенных генераторов-возбудителей; 9 — автоматический регулятор возбуждения; 10 — возбудитель компенсатора в емкостном режиме; 11 — трансформатор питания АРВНа ТЭС при мощности гидрогенераторов до 120, а иногда до 170 MB.А наибольшее распространение получила прямая электрошинная система независимого возбуждения, при которой возбудитель (генератор постоянного тока) и подвозбудитель, если он имеется, приводятся во вращение непосредственно от вала гидрогенератора. Такая система обеспечивает кратность форсировки кф 2 и максимальную скорость нарастания напряжения va ^ 1,5 с1. Номинальная мощность таких возбудителей не превышает 1 МВт, а частота вращения находится в пределах 62,5 — 600 об/мин.В последнее время, учитывая присущие электромашинному возбуждению недостатки, для группы генераторов средней мощности (1,25 — 170 MB. А) рекомендуется замена этих систем возбуждения на статические тиристорные системы параллельного самовозбуждения, отличающиеся относительной простотой и достаточной надежностью.При этом удается избежать таких недостатков электромашинного возбуждения, как склонность к вибрации при значительных вращающихся массах, укрепленных консольно на валу генератора (возбудитель, подвозбудитель, генератор с постоянными магнитами), что требует учащенных капитальных ремонтов и центровок генератора.ЗаключениеЭлектроэнергетика обладает рядом особенностей, обусловливающих необходимость сохранения в ближайшей перспективе необходимость сохранения преимущественно государственного управления его функционированием и развитием. К ним относятся :особая важность для населения и всей экономики обеспечения надежного энергоснабжения;высокая капиталоемкость и сильная инерционность развития электроэнергетики;монопольное положение отдельных предприятий и систем по технологическим условиям, а также вследствие сложившейся в нашей стране высокой концентрации мощностей электроэнергетики;отсутствие необходимых для рыночной экономики резервов в производстве и транспорте энергоресурсов:высокий уровень опасности объектов электроэнергетики для населения и природы.Только учтя вышеперечисленные особенности электроэнергетики можно подходить к решению политических, экономических и социальных проблем и постановке целей в будущем планировании.Список использованной литературыЕрофеев В.Л., Семенов П.Д., Пряхин А.С. Теплотехника: Учебник для вузов. – М.: Академкнига, 2006. – 488с.Оксфордская иллюстрированная энциклопедия. – Т. 6. Изобретения и технологии / Под ред. Монти Финнистон. – М.: Изд-во «Весь Мир», 2002. – 406 с.Петров В.С., Гончаренко В.Г., Погарова Л. С. Проблемы и перспективы развития тепловой энергетики Украины // Энергетика и электрификация. – 2001. – С. 42–44.Прокопенко А.Г., Мысак И.С. Стационарные, переменные и пусковые режимы энергоблоков ТЭС. – М.: Энергоатомиздат, 1990. – 316 с.Рыжкин В.Я. Тепловые электрические станции: Учебник для вузов/ Под ред. В.Я. Гиршвельда. – 3-е изд., перераб. и доп. – М.: Энергоатомиздат, 1987. – 448 с.Стерман Л.С., Лавыгин В.М., Тишин С.Г. Тепловые и атомные электростанции: Учебник для вузов. – 2-е изд. – М.:Изд-во МЭИ, 2004. – 424 с.Тауд Р. Перспективы развития тепловых электростанций на органическом топливе // Теплоэнергетика. – 2000. – № 2. – С. 68–72.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно
    Введите ваш e-mail
    Файл с работой придёт вам на почту после оплаты заказа
    Успешно!
    Работа доступна для скачивания 🤗.