Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Бульові функції

Тип Реферат
Предмет Астрономия
Просмотров
1681
Размер файла
33 б

Ознакомительный фрагмент работы:

Бульові функції

Реферат

на тему:

Бульові функції

1. Алгебри бульових виразів і бульових функцій

7.1.1. Основні поняття

Множину {0, 1} позначимо літерою B. Множину всіх можливих послідовностей з 0 і 1 – Bn. Такі послідовності за традицією будемо називати наборами або векторами довжини n. Очевидно, Bn містить 2n елементів. Значення 0 і 1 називаються протилежними одне до одного.

Означення. Всюди визначена функція з Bn у B називається n-місною функцією алгебри логіки або n-місною бульовою функцією.

Послідовність змінних (x1, x2, …, xn) із значеннями у B позначимо . Бульова функція f() задається у вигляді таблиці, або графіка зі стандартним розташуванням наборів:

x1, x2, …, xnf(x1, x2, …, xn)
0, 0, …, 0, 0f(0, 0, …, 0, 0)
0, 0, …, 0, 1f(0, 0, …, 0, 1)
0, 0, …, 1, 0f(0, 0, …, 1, 0)
0, 0, …, 1, 1f(0, 0, …, 1, 1)
0, 1, …, 1, 1f(0, 1, …, 1, 1)
1, 0, …, 0, 0f(1, 0, …, 0, 0)
1, 1, …, 1, 0f(1, 1, …, 1, 0)
1, 1, …, 1, 1f(1, 1, …, 1, 1)

Зауважимо, що в стандартному розташуванні набори можна розглядати як двійкові записи послідовних чисел від 0 до 2n-1. Функцію, задану зі стандартним розташуванням наборів, можна ототожнити з набором довжини 2n. Наприклад, двомісну функцію, задану таблицею

x yf(x, y)
0 01
0 10
1 01
1 11

можна ототожнити з вектором (1011).

Далі іноді будемо позначати n-місну функцію f() як f(n)(), підкреслюючи кількість змінних, від яких вона залежить.

Очевидно, що множина всіх можливих наборів довжини 2n, тобто множина n-місних бульових функцій, складається з 22n елементів. При n=0 це 2, при n=1 – 4, при n=2 – 16, при n=3 – 256 тощо.

Нуль-місними функціями є сталі 0 і 1.

Одномісні функції подано у наступній таблиці разом з виразами, якими ці функції позначаються:

x01xØx
00101
10110

Функції 0 і 1 називаються тотожними нулем і одиницею, функція x – тотожною, Øx – запереченням. Замість виразу Øx вживається ще вираз . Ці вирази читаються як "не x".

Подамо також деякі з 16 двомісних функцій разом із їх позначеннями:

x yxÙyxÚyx®yx«yxÅyx | yx¯y
0 00011011
0 10110110
1 00100110
1 11111000

Функція, позначена виразом xÙy, називається кон'юнкцією і позначається ще як x&y, x×y або xy. Усі ці вирази читаються як "x і y".

Функція, позначена виразом xÚy, називається диз'юнкцією. Вираз читається як "x або y".

Функція, позначена виразом x®y, називається імплікацією і позначається ще як xÉy. Ці вирази читаються як "x імплікує y" або "з x випливає y".

Функція, позначена виразом x«y, називається еквівалентністю і позначається ще як x~y або xºy. Ці вирази читаються як "x еквівалентно y", що в даному випадку збігається з "x дорівнює y".

Функція, позначена виразом xÅy, називається додаванням за модулем 2 або "виключним або". Зауважимо, що її значення є протилежними до значень еквівалентності.

Функція, позначена виразом x|y, називається штрихом Шеффера і має значення, протилежні значенням кон'юнкції. Її вираз читається як "не x або не y".

Функція, позначена виразом x¯y, називається стрілкою Пірса і має значення, протилежні значенням диз'юнкції. Її вираз читається як "не x і не y".

Зауважимо, що інфіксні позначення наведених функцій вигляду x f y, де f – відповідний знак, склалися історично. Їх так само можна позначати й у вигляді f(x, y), наприклад, Ù(x, y).

З тримісних функцій наведемо лише так звану функцію голосування m(x, y, z), графік якої має такий вигляд:

x y zm(x, y, z)
0 0 00
0 0 10
0 1 00
0 1 11
1 0 00
1 0 11
1 1 01
1 1 11

Її назва зумовлена тим, що її значення на кожному наборі збігається з більшістю значень змінних у цьому наборі.

Множину всіх n-місних функцій позначимо P(n), а множину всіх функцій, тобто об'єднання P(n) по всіх n – P2.

Перейдемо до означення таких понять, як алгебра бульових функцій і алгебра формул.

Алгебри бульових функцій, як і всі інші алгебри, визначаються своїми носіями та сигнатурами операцій. Носіями в алгебрах бульових функцій є множини функцій. Сигнатуру складає операція суперпозиції, або підстановки.

Означення. Нехай є n-місна функція f(n)() і n функцій g1(y1,1, y1,2, …, y1,m1), g2(y2,1, y2,2, …, y2,m2), …, gn(yn,1, yn,2, …, yn,mn), залежні від змінних з деякої їх множини Y={y1, y2, …, yk}. Суперпозицією, або підстановкою функцій g1, g2, …, gn у функцію f(n) називається функція h(m)(y1, y2, …, ym), кожне значення якої h(a1, a2, …, am) визначається як

f(n)(g1(a1,1, a1,2, …, a1,m1), g2(a2,1, a2,2, …, a2,m2), …, gn(an,1, an,2, …, an,mn)).

Суперпозиція ще позначається як

S(f(n); g1(y1,1, y1,2, …, y1,m1), g2(y2,1, y2,2, …, y2,m2), …, gn(yn,1, yn,2, …, yn,mn)).

Приклади.

1. h1(x, y, z)=S(Ù; xÚy, y®z) задається наступною таблицею:

x y zxÚyy®zh1(x, y, z)
0 0 0010
0 0 1010
0 1 0100
0 1 1111
1 0 0111
1 0 1111
1 1 0100
1 1 1111

2. h2(x, y)=S(Ù; xÚy, y®x) задається таблицею:

x yxÚyy®xh2(x, y)
0 0010
0 1100
1 0111
1 1111

Нехай є множина бульових функцій F. Утворюючи з них та їх суперпозицій усі можливі суперпозиції, ми одержимо множину функцій, яку позначимо [F]. Отже, маємо алгебру ([F]; S), породжену множиною функцій F. Інша множина функцій F1 буде породжувати, взагалі кажучи, іншу алгебру ([F1]; S). Наприклад, алгебри ([{(0111), (0001)}]; S) і ([{(10), (0001)}]; S).

Розглянемо тепер поняття алгебри формул (термів, або виразів). Нехай є множина функцій F. Кожній n-місній функції з F поставимо у взаємно однозначну відповідність символ, що її позначає (функціональнийсимвол) f(n). Нехай X – зліченна множина змінних (точніше, їх імен).

Означення.

1. Ім'я змінної є формулою.

2. Якщо f(n) – функціональний символ, а T1, T2, …, Tn є формулами, то f(n)( T1, T2, …, Tn) є формулою.

3. Інших формул немає.

Це означення задає множину формул із функціональними символами з множини F, які одержуються за допомогою підстановок, тобто суперпозицій. Таким чином, ми маємо алгебру формул, породжену множиною функціональних символів F. Інша множина функціональних символів буде породжувати й іншу алгебру формул.

Зв'язки між алгебрами функцій і алгебрами формул встановлюють наступні два означення.

Означення. Значенням формули T на наборі значень змінних з множини X є:

1) значення змінної x, якщо T є змінною x;

2) f(n)(a1, a2, …, an), якщо T=f(n)(T1, T2, …, Tn), а формули T1, T2, …, Tn мають на цьому наборі значення відповідно a1, a2, …, an.

Означення. n-місна бульова функція f(n)задається формулою T, якщо всі змінні у формулі T є змінними з множини X, і при будь-якому наборі значень (a1, a2, …, an) цих змінних x1, x2, …, xn значення формули дорівнює значенню f(n)(a1, a2, …, an).

Звідси випливає інше означення суперпозиції функцій.

Означення. n-місна бульова функція f(n) є суперпозицією функцій f1, f2, …, fn, якщо її можна задати формулою, усі функціональні символи якої є серед символів функцій f1, f2, …, fn.

З наведених прикладів 1 і 2 видно, що функція h1(x, y, z) задається формулою Ù(Ú(x, y), ®(y, z)), або в інфіксному записі (xÚy)Ù(y®z). Аналогічно функція h2(x, y) задається формулою Ù(Ú(x, y), ®(y, x)), або (xÚy)Ù(y®x). Як бачимо, обидві функції задаються формулами з тими самими функціональними символами Ù, Ú, ®, тобто є суперпозиціями цих функцій.

Наостанок наведемо узгодження, які склалися в математиці й дозволяють у формулах з функціональними символами Ø, Ù, Ú, ®, Å, «, |, ¯ записувати не всі необхідні дужки. ****

Суттєві та несуттєві змінні

Розглянемо поняття суттєвої залежності функції від її змінних. Почнемо з прикладів: значення функції h2(x, y) з прикладу 2 на кожному з наборів збігаються зі значеннями x. Отже, зміна значення y не впливає на значення функції, тобто вона фактично не залежить від y. В той час як зміна значення x веде до зміни значення h2. Уточнимо ці міркування наступними означеннями.

Означення. Змінна xi функції f(n)(x1, x2, …, xi, …, xn) називається суттєвою, якщо існує хоча б одна пара наборів значень змінних

(a1, a2, …, ai-1, 0, ai+1, …, an) і (a1, a2, …, ai-1, 1, ai+1, …, an),

така, що

f(n)(a1, a2, …, ai-1, 0, ai+1, …, an) ¹ f(n)(a1, a2, …, ai-1, 1, ai+1, …, an).

Змінна xi називається несуттєвою у противному разі, тобто коли за всіх можливих пар наборів значень

(a1, a2, …, ai-1, 0, ai+1, …, an) і (a1, a2, …, ai-1, 1, ai+1, …, an)

мають місце рівності:

f(n)(a1, a2, …, ai-1, 0, ai+1, …, an) = f(n)(a1, a2, …, ai-1, 1, ai+1, …, an).

Наприклад, неважко переконатися, що всі змінні функції h1 з прикладу 1 є суттєвими. Функція h2 має суттєву змінну x і несуттєву y. Функція двох змінних, задана як вектор (1111), не має суттєвих змінних.

Еквівалентні формули та закони

Одна й та сама бульова функція задається, взагалі кажучи, багатьма різними формулами. Наприклад, неважко переконатися, що формули x®y і ØxÚy обидві задають функцію (1101). Таким чином, можна говорити про еквівалентність цих двох формул.

Означення. Нехай **** Формули F1 і F2 називаються еквівалентними, якщо

2. Бульові функції та комбінаційні схеми

І-елемент АБО-елемент Å-елемент НЕ-елемент

a a a

b r b r b r a r

r = aÙb r = aÚb r = aÅb r = Øa


Розглянемо реалізацію бульових функцій у вигляді комбінаційних схем. Найпростішими з них є логічні елементи, відповідні бульовим функціям: кон'юнкції Ù, диз'юнкції Ú, додавання за модулем 2 Å та заперечення Ø. Вони позначаються й зображаються таким чином:

Входи перших трьох елементів вважаються симетричними згідно законів комутативності, яким задовольняють кон'юнкція, диз'юнкція та додавання за модулем 2.

З наведених логічних елементів будуються складніші схеми, які в загальному випадку мають n входів і m виходів і реалізують набір з m функцій від n аргументів:


a1 b1

a2 b2

.

.

.

an bm


Тут bj=fj(a1, a2, …, an), j=1, 2, …, m..

Приклади.

1. Побудуємо схему з І-, АБО- та НЕ-елементів, яка реалізує функцію Å. Виразимо її за допомогою функцій набору {Ù, Ú, Ø}:

xÅy = xÙØyÚØxÙy.


x


y


Звідси відповідна схема має вигляд:

2. Побудуємо схему з І- та Å-елементів, яка реалізує функцію Ú. Виразимо її за допомогою функцій набору {Ù, Å, 1}:

xÚy = xÅyÅxÙy.

Звідси відповідна схема має вигляд:


x


y


3. Побудуємо схему з І-, АБО- та НЕ-елементів, яка реалізує так званий "однорозрядний напівсуматор"[****] з двома симетричними входами x, y і двома виходами: s = xÅy, d = xÙy. З цих формул видно, що схема має реалізувати додавання двох однорозрядних чисел із переносом. Виразимо s за допомогою функцій набору {Ù, Ú, Ø}: s = xÙØyÚØxÙy. Тоді схема має вигляд:


x s


d

y


3. Замкнені та повні набори функцій. Критерій Поста повноти набору функцій

У підрозділі 7.1 ми побачили, що будь-яку бульову функцію можна задати як суперпозицію функцій з набору {Ù, Ú, Ø} або з набору {Å, Ù, 1}.

Означення. Множина всіх функцій, що є суперпозиціями функцій деякого набору F, і лише їх, називається замиканням цього набору й позначається [F].

Таким чином, якщо P2 позначає множину всіх бульових функцій, то

[{Ù, Ú, Ø}] = [{Å, Ù, 1}] = P2.

Означення. Множина функцій F називається функціонально повною, якщо [F]=P2.

Отже, множини {Ù, Ú, Ø} і {Å, Ù, 1} є функціонально повними.

Природним є питання про те, які властивості повинні мати функціонально повні множини функцій.

Видатний математик Еміль Пост сформулював і обгрунтував критерій повноти множини функцій у загальному випадку алгебри функцій з операцією суперпозиції. У цьому критерії, тобто необхідній і достатній умові, використовується поняття передповного класу. Розглянемо його.

Нехай F позначає множину всіх можливих функцій деякої алгебри функцій A з операцією суперпозиції.

Означення. Множина функцій S називається передповним класом алгебри A, якщо [S]¹F і за будь-якої функції f з множини FS набір SÈ{f} є повним: [SÈ{f}]=F.

Критерій Поста. Нехай S1, S2, … – усі передповні класи алгебри функцій F. Множина функцій M є повною тоді й тільки тоді, коли для кожного передповного класу Si множина M містить fÎMSi.

Приймемо це твердження без доведення.

Пост також дослідив передповні класи алгебри бульових функцій. Їх виявилося лише 5. Це множини всіх функцій:

що зберігають сталу 0,

що зберігають сталу 1,

самодвоїстих,

лінійних,

монотонних.

Означимо вказані функції.

Означення. Функція f(n)зберігає сталу 0, якщо на нульовому наборі має значення 0: f(n)(0, 0, …, 0)=0.

Означення. Функція f(n)зберігає сталу 1, якщо на одиничному наборі має значення 1: f(n)(1, 1, …, 1)=1.

Наприклад, тотожна функція f(x)=x зберігає сталі 0 і 1, функція f(x)=Øx не зберігає жодної.

****Двоїста до …

Означення. Функція f(n) є самодвоїстою, якщо для всіх пар протилежних наборів вона приймає на них протилежні значення:

f(n)(a1, a2, …, an) = ****f(n)(a1, a2, …, an) зберігає сталу 0, якщо на нульовому наборі має значення 0: f(n)(0, 0, …, 0)=0.

Означення. Функція f(n) зберігає сталу 1, якщо на одиничному наборі має значення 1: f(n)(1, 1, …, 1)=1.

Неважко переконатися, що множини означених функцій, позначені відповідно T0, T1, S, L, M, є замкненими класами.


Список рекомендованої літератури

1. Виленкин Н.Я. Популярная комбинаторика.–М.: Наука, 1975.

2. Гаврилов Г.П., Сапоженко А.А. Сборник задач по дискретной математике.–М.: Наука, 1973.

3. Гильберт Д., Бернайс П. Основания математики. Логические исчисления и формализация арифметики.–М.: Наука, 1982

4. Глушков В.М., Цейтлин Г.Е., Ющенко Е.Л. Алгебра. Языки. Программирование.–К.: Наукова думка, 1988.

5. Ершов Ю.Л., Палютин Е.А., Математическая логика.–М.:Наука, 1979.

6. Карри Х.Б. Основания математической логики.–М.: Мир, 1969.

7. Клини С.К. Математическая логика.– М.: Мир, 1973.

8. Колмогоров А.Н. Фомин С.В. Элементы теории функций и функционального анализа.–М.: Наука, 1981.

9. Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера.–М.:Энергоатомиздат, 1988.

10. Курош А.Г. Лекции по общей алгебре.–М.: Наука, 1973.

11. Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов.–М.: Наука, 1984.

12. Линдон Р. Заметки по логике.– М.: Мир, 1968.

13. Мендельсон Э. Введение в математическую логику.–М.: Наука, 1984.

14. Новиков П.С. Элементы математической логики.–М.: Наука, 1973.

15. Ставровський А.Б., Коваль Ю.В. Методичні рекомендації та вказівки до курсу "Дискретна математика" (розділ "Множини та відповідності").– К.:"Київський університет", 1994.

16. Трохимчук Р.М. Збірник задач з дискретної математики (розділ "Множини і відношення") для студентів факультету кібернетики.–К.:"Київський університет", 1997.

17. Трохимчук Р.М. Множини і відношення. Навчальний посібник для студентів факультету кібернетики.–К.:"Київський університет", 1993.

18. Грэхем Р., Кнут Д., Паташник О. Конкретная математика. М.: Мир, 1998.

19. Липский В. Комбинаторика для программистов. М.: Мир, 1988.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
153278
рейтинг
icon
3187
работ сдано
icon
1382
отзывов
avatar
Математика
Физика
История
icon
148912
рейтинг
icon
5982
работ сдано
icon
2705
отзывов
avatar
Химия
Экономика
Биология
icon
105464
рейтинг
icon
2096
работ сдано
icon
1309
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
59 512 оценок star star star star star
среднее 4.9 из 5
ЕЭТК
Ольга, отличный исполнитель, сделала все в срок, без замечаний, обращайтесь к ней
star star star star star
УдГУ
Работы пришлось сдавать раньше срока, исполнитель отправила без проблем
star star star star star
БГИТА БРЯНСК
Спасибо за выполненную работу досрочно! Все изложено понятно и в полном объёме
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Написать реферат

Реферат, Учет и анализ

Срок сдачи к 11 апр.

1 минуту назад

работа не прошла проверку на оригинальность.

Курсовая, Финансовый анализ

Срок сдачи к 7 апр.

1 минуту назад

Написать отчёт по практике

Отчет по практике, Конструирование и расчет

Срок сдачи к 31 мар.

2 минуты назад

Решить 2 задания и напечатьт на А4 с рамкой

Контрольная, теоретические основы электротехники

Срок сдачи к 31 мар.

2 минуты назад

Становление и развитие классической логики

Контрольная, Логика

Срок сдачи к 31 мар.

2 минуты назад

Решить задачи по УП

Решение задач, Уголовное Право

Срок сдачи к 28 мар.

2 минуты назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени: 28 марта 2025 г. 22:25

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Press the down arrow key to interact with the calendar and select a date. Press the question mark key to get the keyboard shortcuts for changing dates.

Файлы (при наличии)

    это быстро и бесплатно