это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
Безкінченно малі функції
Визначення 1. Функція f(x)називається безкінченно малою функцією (або просто безкінченно малою) в точці х=х0(або при х-х0), якщо f(x)=0.Аналогічно визначаються безкінечно малі функції при
Так як межа нескінченно малої функції рівна нулю , то можна дати рівносильне визначення нескнченно малої функції. Функція f(x) називається нескінченно малою в точці х=х0, якщо для любого існує , таке, що для всіх , задовільняющих нерівності , виконується нерівність і на язику послідовності: функція називається безкінечно малою в точці х=х0, якщо для любої зводящоїсі до х0 послідовність являється нескінченно малою.
Теорема. Для виконання рівняння f(x)=Aнеобхідно і достатньо, щоб функція була х-х0нескінченно малою при х-х0
Бескінченно малі функції володіють такими ж свойствами, що і бескінечно малі послідовності.
Теорема. Алгебраїчна сума і проізвідєніє кінцевого числа нескінченно малих функцій при х-х0 , а також проізвідєніє безкінечно малої функції на обмежену функцію являються нескінченно малими функціями при х-х0 .
Нескінченно великі функції
Визначення. Функція f(x)називається безкінченно великою функцією в точці х=х0 (або при х-х0), якщо для любого існує таке, що для всіх задовольняючих нерівність , виконується нерівність .
В цьому випадку пишуть f(x)=і говорять, що функція стремиться до нескінченності при х-х0 або, що вона має нескінченну межу в точці х=х0.
Якщо виконується нерівність , то пишуть f(x)= і говорять, що функція має в точці х0 нескінченну межу, рівну .
Так наприклад, пишуть f(x)=, якщо для любого існує , таке, що для всіх , задовольняючих нерівностями , виконується нерівність .
“На язику послідовності” це визначення записується так: , якщо для любої зводящої ??? до х0 послідовності значення аргументу х, елементи хn який більше x0, відповідають послідовності значення функцій являється нескінченно великий позитивного знака.
Аналогічно визначаються нескінченно великі функції при . Так, наприклад: функція f(x)називається нескінченно великою при , якщо для любого існує таке, що для всіх задовольняючих нерівність , виконується нерівність . При цьому пишуть f(x)=. Якщо виконується нерівність , то пишуть f(x)=().
На завершення покажем, що між нескінченно малими і нескінченно великими функціями існує такий же зв'язок, як і між відповідними послідовностями, функціями, зворотньо безкінечно малої, являється безкінченно вищою і наоборот.
Насправді, нехай f(x)=0 і f(x)0 при .
Докажем, що .
Задамо довільне . Так як f(х) – нескінченно мала функція в точці х0, то для числа 1/існує таке, що для всіх , задовільняющих нерівностям , виконується нерівність . Но тоді для тих же х виконується нерівність , т.с. - нескінченно велика функція в точці х=х0, що і потрібно було доказати.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Расчет параметров участка электроэнергетической системы
Решение задач, Электрические системы, электроника, электротехника
Срок сдачи к 8 янв.
Доклад на тему "личность в теории деятельности а. н. леонтьева" + презентация
Доклад, Психология личности
Срок сдачи к 27 дек.
Заполнить журнал регистрации хозяйственных операций малого предприятия, проставив в нем корреспонденцию счетов
Другое, Финансовый учет и анализ
Срок сдачи к 4 янв.
9-11 страниц. правовые основы военной реформы в ссср в 20-е гг
Реферат, История государства и права России
Срок сдачи к 26 дек.
Заполните форму и узнайте цену на индивидуальную работу!