Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Генетический алгоритм и его сущность

Тип Реферат
Предмет Биология
Просмотров
920
Размер файла
663 б
Поделиться

Ознакомительный фрагмент работы:

Генетический алгоритм и его сущность

Содержание.

Введение…………………………………………………………………..2

Описание Генетического Алгоритма……………………………………3

Результаты тестирования………………………………………………...6

Заключение………………………………………………………………11

Список литературы………………………………………………………13

Приложение………………………………………………………………14

Введение.

В наше время перед человечеством каждый день возникает огромное множество проблем. И человечество нашло большое количество разных способов их решения. Одним из способов оптимизации, который хорошо себя зарекомендовал, является Эволюционный Алгоритм, и как его частный случай Генетический Алгоритм. Этот алгоритм основан на принципах биологической эволюции. Он способен отыскивать решения практически при полном отсутствии предположений о характере исследуемой функции.На сегодняшний день генетические алгоритмы доказали свою конкурентноспособность при решении многих NP-трудных задач и особенно в практических приложениях, где математические модели имеют сложную структуру и применение стандартных методов динамического или линейного программирования крайне затруднено.

Основной механизм эволюции - это естественный отбор. Его суть состоит в том, что более приспособленные особи имеют больше возможностей для выживания и размножения и, следовательно, приносят больше потомства, чем плохо приспособленные особи. При этом благодаря передаче генетической информации (генетическому наследованию) потомки наследуют от родителей основные их качества. Таким образом, потомки сильных индивидуумов также будут относительно хорошо приспособленными, а их доля в общей массе особей будет возрастать. После смены нескольких десятков или сотен поколений средняя приспособленность особей данного вида заметно возрастает. Именно это и лежит в основе алгоритма.

Меня очень заинтересовали генетические алгоритмы, т.к. ранее я не встречалась с алгоритмами решающими практически любую оптимизационную задачу. Целью моей работы было рассмотреть различные модификации алгоритма на тестовых функциях и проанализировать, при какой модификации алгоритм для всех тестовых функций показывает хорошие результаты.

Описание Генетического Алгоритма.

Генетический алгоритм- это метод поиска решений практически любой оптимизационной задачи, моделирующий процессы природной эволюции.

Генетический алгоритм состоит из нескольких этапов:

1. Инициализация

2. Выращивание

3. Оценивание

4. Селекция

5. Скрещивание

6. Мутация

Рассмотрим каждый из этих этапов подробно.

На первом этапе (Инициализация) случайным образом выбирается первоначальная популяция хромосом (генотипов). Хромосома состоит из генов, которые задаются в бинарном виде, и это является отличительной чертой генетических алгоритмов. Прежде чем проводить Инициализацию, требуется посчитать длину хромосом (количество генов), которые будут использоваться. Длина зависит от количества переменных и области допустимых значений.

Выращивание - это второй шаг алгоритма, который подразумевает восстановление индивида (фенотипа) по известному генотипу, например - перевод из двоичной системы в десятичную систему исчисления. Выращивание может проводиться, как для целых, так и для вещественных чисел.

Следующий этап это Оценивание. Он подразумевает вычисление значений функции пригодности индивидов (качества решений-кандидатов).

Селекция - во время этого шага выбираются особи из текущей популяции и заносятся в популяцию родителей, из которых в свою очередь отбирается пара индивидов, которые, в конце концов, будут скрещиваться (важно заметить, что всё это происходит случайным образом). Для имитации естественной селекции индивиды с более высокой пригодностью должны выбираться с большей вероятностью. Существует большое число различных видов селекции.

a) Турнирная селекция. Для отбора индивида создается группа из N (N³ 2) индивидов, выбранных случайным образом. Индивид с наибольшей пригодностью в группе отбирается, остальные - отбрасываются (турнир). N- размертурнира. Преимущества турнирной селекции заключаются в том, что нет преждевременной сходимости, нет стагнации, не требуется явное вычисление функции пригодности. Более того турнирная селекция имеет глубокие аналоги в биологии.

b) Пропорциональная селекция. Пропорциональная селекция работает приблизительно следующим образом: складываются значения пригодности всех индивидов, получается f, затем для каждого индивида значение его пригодности делитсяна f и получается доля этого индивида, которая переводится в проценты, а потом каждому индивиду отводится один из последовательных интервалов, размер которого пропорционален его пригодности. После всего этого случайным образом выбирается число, лежащее в одном из интервалов. Преимущества такой селекции то, что у лучших индивидов больше шансов быть отобранными, но в тоже время шанс остается и у худших индивидов. Но, тем не менее, у пропорциональной селекции есть и недостатки, такие как преждевременная сходимость и стагнация.

Пятый этап называется Скрещивание. Оно также бывает нескольких видов.

a) При Одноточечном скрещивании случайным образом выбирается точка разрыва родительской хромосомы, затем в одного из потомков копируется первая часть первого родителя и вторая часть второго, а во второго потомка первая часть второго родителя и вторая часть первого родителя. После чего случайным образом выбирается выживший потомок. Можно сделать и несколько иначе: так же случайным образом находится точка разрыва, после чего случайным образом выбирается, чья часть будет первой и чья соответственно второй, затем выбранные части копируются в потомка.

b) При Двухточечном скрещивании случайным образом выбираются две точки разрыва, после чего в одного потомка копируются первая и третья части случайным образом выбранного родителя и вторая часть второго родителя. Либо в первого потомка копируются первая и третья части первого родителя и вторая второго, а во второго потомка первая и третья части второго родителя и вторая часть первого, и после этого случайным образом выбирается выживший потомок. Не следует оценивать обоих потомков, до того как выбран выживший, так как их пригодность не влияет на выбор, а её вычисление является наиболее долгим процессом.

c) При Равномерном скрещивании случайным образом (для каждого гена) выбирается номер (первый, второй) родителя, чей ген и записывается в потомка. В этом случае родителей может быть больше двух, в том числе возможно участие всей популяции родителей в целом.

И последний этап это Мутация. Мутация состоит из выполнения(обычно небольших) изменений в значениях одного или нескольких генов в хромосоме. В двоичных хромосомах мутация состоит в инвертировании случайным образом выбранного бита генотипа, например 1010101010 --> 1011101010.В генетических алгоритмах мутация рассматривается как метод восстановления потерянного генетического материала (а не как поиск лучшего решения). В генетических алгоритмах мутация применяется к генам с низкой вероятностью. Можно выбирать вероятность в зависимости от длины хромосомы pm = , где M - число бит в хромосоме.

Генетический алгоритм- это итерационный процесс. После мутации алгоритм снова возвращается ко второму шагу (Выращивание). Так повторяется некоторое количество раз. Количество повторов называется количеством поколений, и оно выбирается подходяще для каждой конкретной задачи. Также и сам алгоритм запускается несколько раз (число прогонов алгоритма). Количество поколений и прогонов выбирается таким образом, чтобы алгоритм хорошо искал решение, а так же работал быстро.

Результаты тестирования.

Функция 1.

-65

,

50 индивидов

10 поколений

100 прогонов

Описание: Решение функции находили в целых числах.

СелекцияМутацияСкрещивание
1-точечное2-точечноеравномерное

турнирная

Высокая0,450,450,44
Средняя0,510,590,64
Низкая0,550,530,68

пропорциональная

Высокая0,840,780,75
Средняя0,630,80,77
Низкая0,390,570,42

Таблица 1.

Функция 2. Функция Растригина.

,

Точность=0,1

50 индивидов

100 поколений

100 прогонов

Описание: Вокруг глобального минимума находится еще несколько локальных минимумов. Поэтому для улучшения результатов поиска, приходится увеличивать ресурсы (количество поколений).

СелекцияМутацияСкрещивание
1-точечное2-точечноеравномерное

турнирная

Высокая0,120,090,03
Средняя0,270,190,11
Низкая0,360,420,3

пропорциональная

Высокая0,580,480,37
Средняя0,630,640,56
Низкая0,410,450,4

Таблица 2.

Функция 3. Функция Розенброка.

,

Точность=0,1

50 индивидов

10 поколений

100 прогонов

Описание: Вокруг глобального минимума, находится область, на которой значения функции достаточно близки к значению минимума, но т.к. явных локальных минимумов нет, алгоритм работает достаточно хорошо и при меньших ресурсах.

СелекцияМутацияСкрещивание
1-точечное2-точечноеравномерное

турнирная

Высокая0,20,360,29
Средняя0,290,330,25
Низкая0,30,230,26

пропорциональная

Высокая0,290,340,4
Средняя0,150,250,32
Низкая0,140,190,35

Таблица 3.

Функция 4. Функция De Jong 2.

,

Точность=0,1

50 индивидов

50 поколений

100 прогонов

Описание: функция отличается тем ,что на заданной области в большой ее части функция принимает одно и тоже значение и есть небольшая область, на которой сосредоточено несколько локальных минимумов, среди которых находится и глобальны минимум. Из результатов видно, что при небольшом увеличении ресурсов, алгоритм хорошо работает и с этой функцией, а, например, поиск локального спуска не смог найти бы решение.

СелекцияМутацияСкрещивание
1-точечное2-точечноеравномерное

турнирная

Высокая0,350,280,24
Средняя0,340,240,32
Низкая0,320,280,34

пропорциональная

Высокая0,240,230,2
Средняя0,210,350,15
Низкая0,170,120,22

Таблица 4.

Функция 5. Функция «Сомбреро».

,

Точность=0,1

50 индивидов

200 поколений

100 прогонов

Описание: Сложность функции состоит в том, что вокруг глобального минимума, по кругу расположены локальные минимумы, и перепутать их с глобальным достаточно легко. Но при еще большем увеличении ресурсов, алгоритм снова показывает неплохие результаты.

СелекцияМутацияСкрещивание
1-точечное2-точечноеравномерное

турнирная

Высокая0,220,190,2
Средняя0,160,140,16
Низкая0,140,190,16

пропорциональная

Высокая0,260,190,24
Средняя0,210,170,22
Низкая0,20,250,29

Таблица 5.

Функция 6. Функция Griewank.

,

Точность=0,1

50 индивидов

50 поколений

100 прогонов

Описание: у этой функции вокруг глобального минимума находится очень много точек локального минимума, и даже при увеличении ресурсов алгоритм с трудом находит решение, но все таки находит, хоть и с малой вероятностью.

СелекцияМутацияСкрещивание
1-точечное2-точечноеравномерное

турнирная

Высокая0,010,010,02
Средняя0,020,010,02
Низкая0,0200,02

пропорциональная

Высокая0,020,020
Средняя0,010,020,02
Низкая00,010,01

Таблица 6.

Функция 7. Функция Катникова.

,

Точность=0,1

50 индивидов

10 поколений

100 прогонов

Описание: функция так же имеет локальные минимумы рядом с глобальным, но на взятой области их не много, и алгоритм работает хорошо даже при небольших затратах.

СелекцияМутацияСкрещивание
1-точечное2-точечноеравномерное

турнирная

Высокая0,420,380,35
Средняя0,460,360,38
Низкая0,350,430,39

пропорциональная

Высокая0,270,330,37
Средняя0,370,480,41
Низкая0,430,480,38

Таблица 7.

Функция 8. Функция Катникова

,

Точность=0,1

50 индивидов

20 поколений

100 прогонов

Описание: из-за увеличения области, увеличивается и количество локальных минимумов, но увеличив ресурсы, мы снова видим неплохой результат.

СелекцияМутацияСкрещивание
1-точечное2-точечноеравномерное

турнирная

Высокая0,150,20,16
Средняя0,30,220,28
Низкая0,30,270,28

пропорциональная

Высокая0,410,420,43
Средняя0,590,660,59
Низкая0,610,580,58

Таблица 8.

Замечание: графики исследуемых функций представлены в приложении.

Заключение.

Я долго подбирала нужное количество ресурсов, при которых алгоритм дает хорошие результаты. Затем я множество раз запускала алгоритм, и в результатах тестирования приведены усредненные результаты. Затем я проводила исследования, какая же модификация алгоритма работает лучше. Для этого я снова составила таблицу. «+» в данной таблице отмечены модификации, в которых был лучший результат (бралось 3 наилучших результата для каждой функции) , «-» худшие результаты.

СелекцияМутацияСкрещивание
1-точечное2-точечноеравномерное

турнирная

Высокая

+

--

+

-

Средняя++

+

-

Низкая+

пропорциональная

Высокая

+

-

+

-

Средняя

++

+++++++
Низкая

+

---

+++

-

+++

Таблица 9.

Из таблицы видно, что наилучшей модификацией является пропорциональная селекция + 2-точечное скрещивание + средняя мутация. Наихудший результат так однозначно определить сложнее, но плохие результаты показали пропорциональная селекция + 1-точечное скрещивание + низкая мутация, турнирная селекция + 1-точечное скрещивание +высокая мутация, , турнирная селекция + равномерное скрещивание + высокая мутация, пропорциональная селекция + равномерное скрещивание + высокая мутация.

Работать с генетическими алгоритмами очень интересно. В дальнейшем я планирую, разработать свои собственные модификации, которые улучшат работу алгоритма, и затем с помощью генетического алгоритма буду решать интересные мне прикладные задачи.

Список литературы.

1. Акопян А.М. Генетические алгоритмы для решения задачи глобальной оптимизации. URL:http://www.cp.niif.spb.su/inpe/4/gaover/gaover.htm

2. Батищев Д.И., Исаев С.А. Оптимизация многоэкстремальных функций с помощью генетических алгоритмов. URL:http://saisa.chat.ru/ga/summer97.html

3. Батищев Д. И. Генетические алгоритмы решения экстремальных задач / Под ред. Львовича Я.Е.: Учеб. пособие. Воронеж, 1995.

4. Батищев Д.И., Гуляева П.А., Исаев С.А. Генетический алгоритм для решения задач невыпуклой оптимизации / Тез.докл. Междунар. конф. "Новые информационные технологии в науке, образовании и бизнесе", Гурзуф, 1997.

5. Генетические алгоритмы. НейроПроект, 1999, support@neuroproject.ru

6. Исаев С.А.. Генетические алгоритмы - эволюционные методы поиска. URL: http://rv.ryazan.ru/~bug/library/ai/isaev/2/part1.html.

7. Редько В. Прикладное эволюционное моделирование. Генетический алгоритм. Оценка эффективности генетического алгоритма. URL:http://www.keldysh.ru/BioCyber/Lecture10.html

8. Росс К. Генетические алгоритмы: почему они работают? когда их применять? / Компьютерра, 1999, № 11

9. Скурихин А.Н. Генетические алгоритмы / Новости искусственного интеллекта, 1995, №4, с. 6-46.

Приложение.

Функция 2. Функция Растригина.

,

Рисунок1. Рисунок2.

Функция 3. Функция Розенброка.

,

Рисунок3. Рисунок4.

Функция 4. Функция DeJong 2.

,

Рисунок5. Рисунок6.

Функция 5. Функция «Сомбреро».

,

Рисунок7. Рисунок8.

Функция 6. Функция Griewank.

,

Рисунок9. Рисунок10.

Функция 7. Функция Катникова.

,

Рисунок11. Рисунок12.

Функция 8. Функция Катникова

,

Рисунок13. Рисунок14.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно