Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Початки комбінаторики

Тип Реферат
Предмет Астрономия
Просмотров
1030
Размер файла
60 б
Поделиться

Ознакомительный фрагмент работы:

Початки комбінаторики

Реферат

на тему:

Початки комбінаторики

1. Принцип добутку і принцип суми. Розміщення з повтореннями

Двома основними правилами комбінаторики є:

Принцип суми. Якщо множина Aмістить m елементів, а множина Bn елементів, і ці множини не перетинаються, то AÈB містить m+n елементів.

Принцип добутку. Якщо множина Aмістить m елементів, а множина Bn елементів, то A´B містить m×n елементів, тобто пар.

Кількість елементів множини Aбудемо далі позначати |A|.

Ці правила мають також вигляд:

Принцип суми. Якщо об'єкт A можна вибрати m способами, а об'єкт Bn іншими способами, то вибір "або A, або B" можна здійснити m+n способами.

Принцип добутку. Якщо об'єкт A можна вибрати m способами і після кожного такого вибору об'єкт B може бути вибраним n способами, то вибір "A і B" в указаному порядку можна здійснити m×n способами.

Наведені правила очевидним чином узагальнюються на випадки довільних скінченних об'єднань множин, що попарно не перетинаються, та на скінченні декартові добутки.

Правило добутку застосовується для підрахунку кількості об'єктів, що розглядаються як елементи декартових добутків відповідних множин. Отже, ці об'єкти являють собою скінченні послідовності – пари, трійки тощо.

Нагадаємо, що з точки зору математики послідовність довжини mелементів множини A– це функція, яка натуральним числам 1, 2, …, mставить у відповідність елементи з A.

Означення. Розміщення з повтореннями по mелементів n-елементної множини A – це послідовність елементів множини A, що має довжину m.

Приклад. При A={a, b, c} розміщення з повтореннями по два елементи – це пари (a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c).

Якщо |A|=n, то за правилом добутку множина всіх розміщень з повтореннями, тобто множина Am=A´A´…´A, містить nmелементів. Зокрема, якщо |A|=2, то розміщень з повтореннями 2m. Зауважимо, що ці розміщення можна взаємно однозначно поставити у відповідність послідовностям з 0 і 1 довжини m.

У багатьох комбінаторних задачах об'єкти, кількість яких треба обчислити, являють собою послідовності, у яких перший елемент належить множині A1, другий – A2, тощо. Але досить часто множина A2визначається лише після того, як зафіксовано перший член послідовності, A3 – після того, як зафіксовано перші два і т.д. Обчислимо, наприклад, кількість 7-цифрових телефонних номерів, у яких немає двох однакових цифр поспіль. Якщо на першому місці в номері є, наприклад, 1, то на другому може бути будь-яка з 9 інших цифр. І так само на подальших сусідніх місцях. Таким чином, тут |A1|=10, |A2|=|A3|=…=|A7|=9, і загальна кількість номерів є 10×96.

2. Розміщення та перестановки без повторень

Означення. Розміщення по m елементів n-елементної множини A, де m£n – це послідовність елементів множини A, що має довжину m і попарно різні члени.

Приклади.

1. При A={a, b, c} розміщення по два елементи – це пари (a,b), (a,c), (b,a), (b,c), (c,a), (c,b).

2. Розподіл nрізних кульок по одній на кожний з mрізних ящиків, m£n. Ящики можна пронумерувати від 1 до m, кульки – від 1 до n. Тоді кожному розподілу взаємно однозначно відповідає послідовність довжини m попарно різних номерів від 1 до n.

Неважко підрахувати кількість послідовностей з прикладу 2. На першому місці може стояти будь-який із номерів 1, …, n. На другому – незалежно від того, який саме був на першому, будь-який із n-1, що залишилися. І так далі. За принципом добутку, таких послідовностей

n×(n-1)×…×(n-m+1),

або n!/(n-m)!. Цей добуток позначається або (n)mабо nm.

Означення. Перестановкаn елементів множини Aбез повторень – це розміщення по n елементів, тобто послідовність елементів множини A, що має довжину n і попарно різні члени.

Приклад. При A={a, b, c} усі перестановки –це трійки (a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a).

Очевидно, що кількість перестановок nелементів дорівнює кількості розміщень по mпри m=n, тобто n!. Отже, nn=n!.

3. Комбінації без повторень

Означення. Комбінація по mелементів n-елементної множини – це її m-елементна підмножина.

Приклади.

1. При A={a, b, c} усі комбінації по два елементи – це підмножини {a,b}, {a,c}, {b,c}.

2. Розподіл nрізних кульок по одній на кожний з mоднакових ящиків, m£n. Оскільки ящики однакові, то розподіл взаємно однозначно визначається підмножиною з m кульок, що розкладаються.

З кожної m-елементної комбінації елементів n-елементної множини можна утворити m! перестановок елементів цієї підмножини. Їх можна розглядати як розміщення по mелементів. Таким чином, кожні m! розміщень із тим самим складом, але різним порядком елементів відповідають одній комбінації. Звідси очевидно, що кількість комбінацій є =. Ця кількість позначається або .

4. Перестановки з повтореннями

Означення. Перестановка з повтореннями по m елементів множини A={a1, a2, …, an} складу (k1, k2, …, kn) – це послідовність довжини m=k1+k2+…+kn, в якій елементи a1, a2, …, an повторюються відповідно k1, k2, …, kn разів.

Приклади.

1. При A={a, b, c} перестановками з повтореннями складу (1, 0, 2) є послідовності (a,c,c), (c,a,c), (c,c,a), складу (1, 1, 1) – (a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a).

2. Нехай m різних кульок розкладаються по n різних ящиках так, що в першому ящику k1 кульок, у другому – k2 кульок, …, у n-му – kn кульок, причому m=k1+k2+…+kn. Пронумеруємо кульки від 1 до m, ящики – від 1 до n. Задамо розподілення кульок як функцію, яка ставить у відповідність номеру кульки номер ящика, куди вона потрапила. Отже, маємо послідовність довжини m=k1+k2+…+kn, в якій номери 1, 2, …, n повторюються k1, k2, …, kn разів відповідно. Очевидно, що така функція відповідає розкладу кульок взаємно однозначно. Таким чином, розклад подається як перестановка з повтореннями складу (k1, k2, …, kn).

Кількість перестановок з повтореннями з елементів множини A={a1, a2, …, an} складу (k1, k2, …, kn) позначається P(k1, k2, …, kn) і виражається формулою:

P(k1, k2, …, kn)=.

Доведемо її за допомогою математичної індукції за n.

1. База індукції. При n=2 будь-якій перестановці складу (k1, k2) взаємно однозначно відповідає підмножина тих номерів місць із {1, 2, …, k1+k2}, на яких розташовано елементи a1. Але ці підмножини є комбінаціями з k1+k2 по k1, і їх . Отже, P(k1, k2)=, і базу доведено.

2. Індукційний перехід. За припущенням індукції,

P(k1, k2, …, kn)=.

Поставимо довільній перестановці складу (k1, k2, …, kn, kn+1) у відповідність пару вигляду

(підмножина номерів місць, де розташовано елементи an+1,

перестановка з повтореннями решти елементів по інших місцях).

За принципом добутку та за припущенням індукції, кількість таких пар є

Оскільки очевидно, що відповідність між перестановками складу (k1, k2, …, kn, kn+1) та наведеними парами є взаємно однозначною, то правильність формули для P(k1, k2, …, kn) доведено.

За означенням, перестановки складу (k1, k2, …, kn) є послідовностями довжини m=k1+k2+…+kn, тобто розміщеннями з повтореннями окремого вигляду, а саме, з фіксованими кількостями елементів a1, a2, …, an. Таким чином, послідовності чисел (k1, k2, …, kn), таких, що k1+k2+…+kn=m, взаємно однозначно відповідає підмножина множини розміщень. Перебираючи всі можливі послідовності чисел (k1, k2, …, kn), ми перебираємо всі можливі розміщення.

Наведені неформальні міркування демонструють зв'язок між перестановками й розміщеннями з повтореннями та обгрунтовують формулу:

nm=.

5. Комбінації з повтореннями

Комбінації елементів якоїсь множини – це її підмножини. Але у множинах елементи не повторюються, тому термін "комбінації з повтореннями", що склався в математиці, не можна вважати вдалим.

Розглянемо це поняття за допомогою перестановок із повтореннями. Усі перестановки з повтореннями з елементів множини A={a1, a2, …, an} з тим самим складом (k1, k2, …, kn), де k1+k2+…+kn=m, будемо вважати еквівалентними між собою. Таким чином, множина перестановок розбивається на класи еквівалентності, які взаємно однозначно відповідають усім можливим складам (k1, k2, …, kn). Кожний такий клас еквівалентності й називається комбінацією по mелементів з повтореннями складу (k1, k2, …, kn) [1].

Можна означити комбінації з повтореннями дещо інакше. Серед усіх еквівалентних перестановок складу (k1, k2, …, kn) є перестановка вигляду

(a1, a1, …, a1, a2, a2, …, a2, …, an, an, …, an).

142431424314243

k1k2kn

Цю перестановку також будемо називати комбінацією по mелементів множини {a1, a2, …, an} з повтореннями складу (k1, k2, …, kn).

Приклади.

1. При A={a, b, c} усіма комбінаціями по 2 з повтореннями єпослідовності (a,a), (a,b), (a,c), (b,b), (b,c), (c,c). Їм відповідають усі можливі склади (2,0,0), (1,1,0), (1,0,1), (0,2,0), (0,1,1), (0,0,2).

2. Нехай m однакових кульок розкладаються по n різних ящиках так, що у першому ящику k1 кульок, у другому – k2 кульок, …, у n-му – kn кульок, причому m=k1+k2+…+kn. Пронумеруємо ящики від 1 до n. Задамо розподілення кульок як функцію, яка ставить у відповідність номеру ящика кількість кульок у ньому. Отже, маємо послідовність (k1, k2, …, kn), що є складом. Припишемо кожній кульці номер її ящика і утворимо послідовність номерів вигляду

(1, …, 1, 2, …, 2, …, n, …, n).

123123123

k1k2kn

Як бачимо, множиною елементів, якими утворюється комбінація з повтореннями, тут є {1, 2, …, n}.

Комбінації по m елементів множини {a1, a2, …, an} з повтореннями складу (k1, k2, …, kn) можна взаємно однозначно поставити у відповідність послідовність довжини m+n-1 із m "1" і n-1 "0":

(1, …, 1, 0, 1, …, 1, 0, …, 1, …, 1).

123123123

k1k2kn

Такій послідовності, у свою чергу, взаємно однозначно відповідає комбінація номерів місць у цій послідовності, на яких розташовані 1 (або 0). Кількість таких комбінацій є , що й є кількістю всіх можливих комбінацій по m елементів n-елементної множини з повтореннями.

6. Формули включень і виключень

Кількість елементів об'єднання двох множин, що не перетинаються, є сумою їх кількостей. Але якщо множини перетинаються, то елементи перетину при цьому додаванні кількостей враховуються двічі. Тому їх кількість треба один раз відняти:

|AÈB|=|A|+|B|-|AÇB|. (*)

При обчисленні |AÈBÈC| додавання |A|+|B|+|C| веде до того, що елементи кожного з перетинів |AÇB|+|BÇC|+|AÇC| враховуються двічі, тому їх треба по одному разу відняти. Якщо перетин AÇBÇC порожній, то в результаті кожний елемент об'єднання враховано по одному разу, і все гаразд. Якщо ні, то в результаті елементи цього перетину тричі додаються і тричі віднімаються, тобто у виразі

|A|+|B|+|C|–|AÇB|–|BÇC|–|AÇC|

не враховані. Отже, їх треба додати:

|AÈB|=|A|+|B|+|C|–|AÇB|–|BÇC|–|AÇC|+|AÇBÇC|. (**)

Вирази (*), (**) наводять на припущення, що в загальному випадку об'єднання n множин A1, A2, …, An

|A1ÈA2È…ÈAn|=|A1|+|A2|+…+|An|–|A1ÇA2|–|A1ÇA3|–…–|An-1ÇAn|+
+|A1ÇA2ÇA3|+…+|An-2ÇAn-1ÈAn|–…+(-1)n+1|A1ÇA2Ç…ÇAn|. (1)

Як бачимо, кількості елементів усіх можливих перетинів непарної кількості множин додаються, а парної – віднімаються. Формула (1) називається формулою включень і виключень.

Доведення формули (1) можна провести з використанням індукції за n, але тут ми його не наводимо.

Ця формула дає змогу за кількостями елементів у кожній з множин, в усіх можливих їх перетинах по дві, по три і т.д. множини обчислити кількість елементів об'єднання.

Приклад. Є група студентів, серед яких каву п'ють 12 (це множина A), чай – 10 (множина B), йогурт – 8 (C), каву і чай – 5 (AÇB), каву і йогурт – 4 (AÇC), чай і йогурт – 3 (BÇC), усі три напої – 1 (AÇBÇC). Тоді всього студентів у групі 12+10+8-5-4-3+1=19.

За допомогою формули (1) можна обчислити кількість елементів деякої множини U, що не належать жодній з її підмножин A1, A2, …, An:

|U(A1ÈA2È…ÈAn)|=|U|–|A1|–|A2|–…–|An|+|A1ÇA2|+|A1ÇA3|+…+
+|An-1 ÇAn|–|A1ÇA2ÇA3|–…–|An-2ÇAn-1ÈAn|+…+(-1)n|A1ÇA2Ç…ÇAn|. (2)

Формулу (2) також називають формулою включень і виключень.

7. Біноміальні коефіцієнти

Означення. Біном Ньютона – це вираз вигляду (a+b)n.

Біном розкладається в суму одночленів, які є добутками деяких степенів його доданків a і b.Школярі-восьмикласники знають формули розкладу бінома Ньютона в многочлен із степенями a і bпри n=2 та 3:

(a+b)2=a2+2ab+b2,

(a+b)3=a3+3a2b+3ab2+b3.

Спробуємо розкласти (a+b)n в многочлен у загальному випадку n. Запишемо його у вигляді, пронумерувавши дужки:

1 2 … n

(a+b)(a+b)…(a+b).

Очевидно, що кожний доданок містить n множників – k множників a і n-k множників b, тобто має вигляд akbn-k, де k£n, k³0. Кожний такий доданок взаємно однозначно відповідає підмножині номерів дужок, з яких для утворення цього доданка ми брали множники a. Таким чином, доданків akbn-k рівно стільки, скільки таких підмножин, тобто =. Отже,

(a+b)n =

Коефіцієнти при akbn-k називаються біноміальними, оскільки записуються в розкладі бінома (a+b)n.

Біноміальні коефіцієнти мають очевидну властивість симетрії:

= =..

Розглянемо окремі випадки бінома Ньютона:

при b=1 маємо (a+1)n = ,

при a=b=1 маємо (1+1)n = 2n = ,

при a= –1, b=1 маємо (–1+1)n = 0n = (–1)k.

За останньою рівністю, зокрема, природно означити 00 як 1, слідуючи за Доналдом Кнутом [****].

Запишемо біноміальні коефіцієнти для початкових значень n=0, 1, …, 5 у трикутну таблицю:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

З таблиці видно, що кожний елемент, який не є першим у своєму рядку, є сумою елемента над ним і елемента, розташованого над ним і ліворуч:

= +

Ця тотожність називається правилом додавання. Існує багато різних її доведень. Ось "лобове":

Доозначимо біноміальні коефіцієнти при k<0 та k>n як =0. Тоді правило додавання справджується за будь-яких значень k. Скористаємося цим доозначенням також і далі, розглядаючи суми, в яких додавання ведеться за нижнім коефіцієнтом k у виразах вигляду . Це дозволить не записувати межі, у яких змінюється k.

Доведемо ще одну тотожність, яка називається згорткою Вандермонда:

.

Якщо замінити kна k-m, а n – на n-m, то одержимо рівність

.

Вона має назву тотожності Коші. Доведемо спочатку цю рівність. Нехай є r дівчат і s юнаків. Праворуч маємо кількість способів вибрати з них усіх n осіб. Кожний доданок у сумі ліворуч задає кількість способів вибрати n осіб так, щоб серед них було k дівчат з r і n-k юнаків з s. Додавання цих кількостей по всіх можливих значеннях k дає кількість всіх способів вибрати з них усіх n осіб. Отже, вирази ліворуч і праворуч задають одну й ту саму кількість, тобто рівні. Якщо тепер замінити назад kна k+m, а n на n+m, одержимо початкову рівність.

Таблиця біноміальних коефіцієнтів зображається ще у вигляді так званого арифметичного трикутника, або трикутника Паскаля:

1

1 1

1 2 1

1 3 3 1

Розширимо поняття біноміальних коефіцієнтів на дійсні значення n. Згадаємо зв'язок між кількістю комбінацій з n елементів по k та кількістю їх розміщень без повторень: = (n)k/k!, де (n)k=n(n–1)…(n–k+1). Але останній добуток означений при будь-якому дійсному значенні n. Слідуючи Доналду Кнуту [****], замість цілого n розглянемо дійсне r: (r)k=r(r–1)…(r–k+1). Тоді за дійсних значень r означимо як (r)k/k!.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно