Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Інтегральне числення Невизначений інтеграл

Тип Реферат
Предмет Астрономия
Просмотров
610
Размер файла
84 б
Поделиться

Ознакомительный фрагмент работы:

Інтегральне числення Невизначений інтеграл

ІНТЕГРАЛЬНЕ ЧИСЛЕННЯ

НЕВИЗНАЧЕНИЙ ІНТЕГРАЛ

Означення: Функція F(x) називається первісною для функції f(x) на проміжку І, якщо на цьому проміжку F'(x) = f(x) або dF(x) = f(x)dx .

Із означення виходить, що первісна F(x)— диференційовна, а значить неперервна функція на проміжку І, і її вигляд суттєво залежить від проміжка, на якому вона розглядається.

Приклад: Первісні для функції мають вигляд:

причому, F1(x), F2(x)— неперервні R, aF3(x)у точці х = 0 має розрив (рис. 7.1). У цьому прикладі первісні Fi(x) і = 1,2,3, знайдені методом добору із на­ступною перевіркою, використовуючи таблицю похідних функцій.

Теорема (про множину первісних). Якщо F(x) — первісна для функції f(х) на проміжку I, то

1) F(x) + C— також первісна для f(x)на проміжку I;

2) будь-яка первісна Ф(х) дляf(x) може бути представлена у вигляді Ф(х) = F(x) + С на проміжку I. (Тут С = constназивається довільною сталою).

Наслідок. Дві будь-які первісні для однієї й тієї самої функції на проміжку I відрізняються між собою на сталу величину (рис. 7.1).

Означення: Операція знаходження первісних для функції f(x) називає­ться інтегруваннямf(x).

Задача інтегрування функції на проміжку полягає у тому, щоб знайти всі первісні функції на цьому проміжку, або довести, що функція немає первісних на цьому проміжку.

Для розв'язання задачі інтегрування функції достатньо знайти одну будь-яку первісну на розглядуваному проміжку, наприклад F(x), тоді (за теоремою про множину первісних) F(x) + С — загальний вигляд всієї мно­жини первісних на цьому проміжку.

Означення: Функція F(x) + С, що являє собою загальний вигляд всієї множини первісних для функції f(х) на проміжку I, називається невизначеним інтегралом від функції f(x) на проміжку I і позначається

(7.1)

де — знак невизначеного інтеграла;

f(x)— підінтегральна функція;

f(x)dx— підінтегральний вираз;

dx— диференціал змінної інтегрування.

Геометричний зміст невизначеного інтеграла полягає у тому, що функція у= F(X) + С є рівняння однопараметричної сім'ї кривих, які одержуються одна з другої шляхом паралельного переносу вздовж осі ординат (рис. 7.2).

Теорема (Коші). Для існування невизначеного інтеграла для функції f(x) на певному проміжку достатньо, рис. 7.2 щоб f(x)була неперервною на цьому проміжку.

Зауваження. Виявляється є такі невизначені інтеграли від елементарних функцій, які через елементарні функції не виражаються, наприклад:

існують у кожному із проміжків області визначення, але записати їх через основні елементарні функції не можна; в такому розумінні ці інтеграли називають «неінтегровними».

a) Властивості, що випливають із означення (7.1):

І. Похідна від невизначеного інтеграла дорівнює підінтегральній функції

II. Диференціал від невизначеного інтеграла дорівнює підінтегральному виразу.

ІІІ.

б) Властивості, що відображають основні правила інтегрування.

IV. Сталий множник, що не дорівнює нулю, можна виносити з-під знака інтеграла, тобто

(7.2)

V. Невизначений інтеграл від суми функцій дорівнює сумі невизначених інтегралів від цих функцій, якщо вони існують, тобто

(7.3)

1. 2. 3.

4. 5. 6.

7. 8.

9.

11.

13.

15.

16.

17.

18.

19.

20.

21.

Цей метод базується на властивості невизначеного інтеграла (7.3). Мета методу — розкласти підінтегральну функцію на такі доданки, інтеграли від яких відомі або їх простіше інтегрувати, ніж початкову підінтегральну функцію.

Приклад.

Теорема. Якщо функції и(х) та v(х)мають неперервні похідні, то:

(7.4)

На практиці функції u(x) та v(x)рекомендується вибирати за таким правилом:

— при інтегруванні частинами підінтегральний вираз f(x)dxрозбиваютьна два множники типу и dv, тобто f(x)dx = u-dv; при цьому функція и(х)вибирається такою, щоб при диференціюванні вона спрощувалась, а за dvприймають залишок підінтегрального виразу, який містить dx, інтеграл від якого відомий, або може бути просто знайдений.

Приклад.

Інколи доводиться інтегрування частинами застосовувати кілька разів, що ілюструє наступний приклад.

Нижче наведені деякі типи інтегралів, при інтегруванні яких застосо­вують метод інтегрування частинами та показано вибір функцій и(х) та

де Р(х) — многочлен, Q(x)— алгебраїчна функція, а R.

Звичайно, не слід думати, що метод інтегрування частинами обмежує­ться застосуванням тільки до інтегралів типу (7.5).

В деяких випадках, після інтегрування частинами інтеграла одержуєть­ся рівняння, із якого знаходять шуканий інтеграл.

Приклад.

Отже, одержали рівняння G = eх(cosx + sinx)-G, із якого знаходимо

Мета методу підстановки — перетворити даний інтеграл до такого вигляду, який простіше інтегрувати.

Теорема. Якщоf(x)— неперервна, а х = (t) має неперервну похідну, то:

(7.6)

Наслідок,

(7.7)

Зауваження. Специфіка інтегрування невизначеного інтеграла не зале­жить від того чи змінна інтегрування є незалежною змінною, чи сама є функцією (на підставі інваріантності форми запису першого диференціа­лу), тому, наприклад:

В такому розумінні слід розглядати і всю таблицю інтегралів.

Приклад.

Варіант заміни змінної інтегрування (x) = t(7.7) зручний тоді, коли підінтегральний вираз можна розкласти на два множники: f ((x)) та ’(x)dx.

Приклад.

Для деяких класів підінтегральних функцій розроблені стандартні замі­ни. Вибір зручної підстановки визначається знанням стандартних підстано­вок та досвідом.

При безпосередньому інтегруванні використовується формула (7.7) варіанту заміни змінної, але саму заміну не записують (її роблять усно) при цьому використовують операцію внесення функції під знак диференціала. Отже, якщо , то:

Зокрема, коли (х) є лінійною функцією, тобто (x)=ax+b, будемомати:

Зауваження. Під знак диференціала можна вносити будь-який сталий доданок (значення диференціала при цьому не зміниться):

Приклад.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 395 оценок star star star star star
среднее 4.9 из 5
Рудн
Работа выполнена отлично! хороший исполнитель ! Раньше срока все сделала!
star star star star star
ЮУрГУ
Отличная сделанная работа, да и еще и раньше срока, без замечаний. Спасибо.
star star star star star
ОГИС
Работа выполнена быстро и качественно! По написанию-доступна к восприятию! Легко читается!...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи по земельному праву

Решение задач, Юриспруденция

Срок сдачи к 18 янв.

1 минуту назад

Выполнить 9 тестов внимательно!

Тест дистанционно, Инвестиционная безопасность

Срок сдачи к 16 янв.

1 минуту назад

Необходимо выполнить и оформить три лабораторных работы в программе...

Лабораторная, Математическое моделирование

Срок сдачи к 15 янв.

3 минуты назад

Задача. Вариант 13

Решение задач, Станкостроение, машиностроение, детали машин

Срок сдачи к 21 янв.

4 минуты назад

ответить на вопросы

Ответы на билеты, Металлургия цветных металлов

Срок сдачи к 19 янв.

4 минуты назад

Практические работы

Другое, Транспортная инфраструктура, автомобильное дело, машиностроение, детали машин

Срок сдачи к 18 янв.

4 минуты назад

Оформить списка литературы согласно требованиям.

Диплом, Информатика

Срок сдачи к 17 янв.

5 минут назад

Выполнить 3 теста по Технологии продукции общественного питания. М-08210

Тест дистанционно, Общественное питание, кулинария

Срок сдачи к 15 янв.

7 минут назад

Патентные исследования по теме студенческой работы «Составы и способы получения пленок из полимерных материалов»

Курсовая, Основы научных исследований и защита информации

Срок сдачи к 23 янв.

7 минут назад

Выполнить строго!!!

Контрольная, Экономическая безопасность

Срок сдачи к 15 янв.

9 минут назад

Сущность языка, проблема его происхождения

Реферат, Русский язык и культура речи

Срок сдачи к 15 янв.

9 минут назад

Методика преподавания дисциплин (модулей) психолого-педагогического профиля

Тест дистанционно, Психология и педагогика

Срок сдачи к 16 янв.

9 минут назад

Криминалистика. Ответить на 2 вопроса и одна задача

Решение задач, Юриспруденция

Срок сдачи к 18 янв.

9 минут назад

Лейкоз семейства кошачьих

Диплом, Дипломная работа + презентация

Срок сдачи к 11 мар.

9 минут назад

Вам нужно сконструировать представления для решения трех различных...

Решение задач, Анализ и визуализация данных, дизайн, информатика экономика,

Срок сдачи к 15 янв.

10 минут назад

Тест дистанционно

Тест дистанционно, Менеджмент организации

Срок сдачи к 30 янв.

11 минут назад
11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно