Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Перенос генетического материала и генетическое картирование у актиномицетов

Тип Реферат
Предмет Биология
Просмотров
1102
Размер файла
29 б
Поделиться

Ознакомительный фрагмент работы:

Перенос генетического материала и генетическое картирование у актиномицетов

Министерство сельского хозяйства РФ

ФГОУ ВПО

«Оренбургский государственный аграрный университет»

Кафедра микробиологии

Реферат

по генетике микроорганизмов на тему:

«Перенос генетического материала и генетическое картирование у актиномицетов»

Выполнил: студент ΙV курса

ФВМ и Б специальности

«Микробиология» Акжигитов А.С.

Проверил: преподаватель кафедры

микробиологии Капустина О.А.

Оренбург 2010

Содержание:

ВВЕДЕНИЕ

1. Перенос генетического материла у актиномицетов

1.1 Перенос генетического материала с помощью плазмид

1.2 Передача генетического материала с помощью рекомбинации

1.3 Перенос генетического материала посредством трансдукции

2. Генетическое картирование актиномицетов

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

Актиномицеты — это группа микроорганизмов, соединяющая в себе черты бактерий и грибов. Широко распространены в почвах, в иле водоёмов, в воздухе и на растительных остатках.

Морфологические признаки актиномицет имеют аналогию со строением несовершенных грибов. Для них характерно нитевидное или палочковидное и кокковидное строение и наличие боковых выростов; способны к формированию ветвящегося мицелия на некоторых стадиях развития диаметром 0,4—1,5 мкм, которая проявляется у них в оптимальных для существования условиях. Подчеркивая бактериальное происхождение актиномицетов, ученые называют их аналог грибного мицелия тонкими нитями. Актиномицеты включают в себя организмы с наиболее характерными среди всех бактерий нитчатым строением.

Наиболее важными вопросами, касающиеся изучения актиномицет, являются исследование механизмов передачи генетического материала и создание новых способов генетического картирования. На настоящий момент достаточно подробно изучены способы передачи генетического материала плазмидами, с помощью рекомбинации, трансдукции, конъюгации гамет, а также эффективные методы составления генетических карт.

1. Перенос генетического материала у актиномицетов

1.1 Перенос генетического материала с помощью плазмид

Это наиболее часто встречающийся способ переноса генетического материала у актиномицетов.

Линейные плазмиды актиномицетов были обнаружены раньше, чем линейные хромосомы. Впервые они были описаны у одного из видов актиномицетов в конце 70-х – начале 80-х гг. Эти плазмиды, pSLA 1 и pSLA 2, были размером несколько более 10 тпн. Они детерминировали синтез антибиотика ланкацидина. В клетке содержалось до 60 копий таких плазмид. Линейное строение их ДНК доказывалось следующим образом.

Во-первых, обработка рестриктазами давала такую комбинацию фрагментов, на основании которой могла быть построена лишь линейная, но не кольцевая карта. Далее, два фрагмента не входили в гель при электрофорезе, если ДНК не была депротеинизирована проназой. Если ДНК была обработана фенолом и додецилсульфатом натрия, то эти фрагменты можно было найти на электрофореграммах, но их передвижение было аномальным. Лишь после депротеинизации они передвигались со скоростью, соответствующей их размерам. Нативная ДНК плазмид была устойчива к 3'-экзонуклеазе, но чувствительна к экзонуклеазе фага А (5'-экзонуклеаза). Все это свидетельствовало о том, что плазмиды были линейными, и на их свободных концах находились белки, прикрепленные к 5'-концам ДНК. Впоследствии было установлено, что на концах линейных плазмид S. rochei находятся многочисленные повторы длиной в несколько сот пар оснований. У плазмиды pSCL из клеток S. clavuligerus концевые участки с повторами, размером около 1 тпн, были очень похожи друг на друга; правый участок мог гибридизоваться с левым.

ДНК одной линейной плазмиды, pSCL-1 из S. clavuligerus, была полностью секвенирована. Вся плазмида была размером в 11696 пар нуклеотидов (п.н.). На ее концах были обнаружены занимающие ~900 п.н. концевые инвертированные повторы, имеющие -70% гомологии с концевыми участками плазмиды из S. rochei. К концам "крепились" белки; видимо, с этих участков начиналась репликация ДНК, идущая от концов к центру линейной плазмиды. Однако в некоторых случаях линейные плазмиды могли реплицироваться с другой области, расположенной в центре плазмиды. Так, плазмида pSCL 1 из S. clavuligerus размером в 12 т.п.н. могла быть клонирована в плазмиде Е. coli pUC 19, Если затем кольцевую химерную плазмиду выделяли из клеток Е. coli, то она реплицировалась в клетках актиномицетов как кольцевая молекула. Это свойство сохранялось и тогда, когда рестриктазами "обрезали" концевые части pSCL 1 и "закольцовывали" основную часть плазмиды лигазой. Видимо, второй ориджин репликации в нормальных условиях роста был критическим. Есть упоминание о том, что линейная плазмида pSA 1 под влиянием определенных мутаций может реплицироваться как кольцевая структура; при этом ее копийность возрастает от I до 20 - 30 копий на клетку. Линейные плазмиды могли быть конъюгативными.

Все сказанное выше относилось в основном к плазмидам актиномицетов в 10 – 15 т.п.н. Однако наряду с ними в клетках актиномицетов существуют огромные плазмиды с линейной структурой: от 50 тпн (например, SLP 2) до 300 – 590 т.п.н. (SCP 1 и ряд других плазмид; 26 - 28; 76). Одна из этих плазмид – SCP I – была известна гораздо раньше, но лишь недавно с применением пульсфореза удалось показать ее линейную структуру и другие особенности строения. В поле пульсфореза она вела себя как линейная дрожжевая хромосома сходных размеров; другим доказательством ее линейности служили расчеты с построением рестрикционной карты после применения целого спектра рестриктаз. Для этой и других гигантских плазмид характерна очень большая величина концевых участков с инвертированными повторами; у SCP 1 каждый концевой участок имел размер в 40 тпн, что в сумме составляло заметную часть всей длины плазмиды. Интересно, что у крупной линейной плазмиды SLP 2 правый концевой участок был практически полностью гомологичен обоим концам линейной хромосомы клетки, что вначале вызвало недоумение (три одинаковых концевых участка в клетке, обладающей лишь одной линейной хромосомой). Однако затем была выявлена "плазмидная принадлежность" одного из этих концов. Гигантская плазмида SCP 1 может нести участки хромосомы, и участки этой плазмиды могут включаться в хромосому. При ее огромной величине ее копийность равняется приблизительно четырем копиям на клетку, что составляет ~20% плазмидной ДНК на клеточныйгеном.

1.2 Перенос генетического материала с помощью рекомбинации

Явление рекомбинации у актиномицет напоминает гибридизацию у высших организмов. Установлено, что при контакте клеток (чаще дефектных) двух разных штаммов бактерий или актиномицетов свойства одного штамма переходят к другому. В результате получаются смешанные формы с признаками двух исходных культур. Такой процесс происходит между двумя родственными организмами.

Явление генетической рекомбинации было продемонстрировано многими исследователями у ряда представителей рода Streptomyces, в том числе продуцирующих антибиотики, но только у одного из штаммов Str. coelicolorгенетические исследования проводились планомерно в течение многих лет . Однако, хотя основные сведения о генетической системе актиномицетов получены для Str. coelicolor, результаты исследований других видов актиномицетов согласуются с ними, что дает возможность говорить об общих особенностях генетической рекомбинации в пределах рода Streptomyces (Actinomyces, по классификации Н. А. Красильникова).

Методические подходы при изучении генетики актиномицетов принципиально те же, что и для других микроорганизмов. Скрещивания производят между штаммами, маркированными различными генетическими факторами (биохимическая недостаточность, устойчивость к антибиотикам и др.), а отбор рекомбинантов ведут на специально подобранных селективных средах. И то и другое необходимо, так как генетическая рекомбинация — явление редкое и генетические рекомбинанты составляют лишь незначительную долю в популяции исходных штаммов.

В настоящее время можно считать установленным, что процесс генетической рекомбинации у актиномицетов в основном сходен с процессом конъюгации у бактерий, детально изученным у Е. coli, Str. coelicolor, подобно бактериям, имеет единую кольцевую группу сцепления, на которой определено местоположение около 40 различных генетических локусов. Характерная особенность генетической карты Str. coelicolorсостоит в неслучайном расположении генетических локусов, сосредоточенных преимущественно в двух областях карты, тогда как две другие области являются почти «пустыми». Такое разобщение двух групп локусов в пространстве (возможно, лишь кажущееся) и послужило причиной первоначального представления о наличии у актиномицетов двух независимых групп сцепления.

Явление генетической рекомбинации описано у большинства изученных видов актиномицетов. Однако возникновение генетических рекомбинантов при внутривидовых скрещиваниях наблюдается далеко не во всех комбинациях мутантов, даже если они и происходят из одного и того же штамма. Вопрос о половой полярности штаммов внутри одного вида до сих пор остается не решенным, хотя и имеются некоторые данные в пользу ее существования. Лучше изучен вопрос об особенностях самого процесса генетической рекомбинации у актиномицетов. Этот процесс состоит из нескольких этапов, причем, как установлено недавними исследованиями, оба родительских штамма принимают неодинаковое участие в скрещивании: один — играет роль донора, другой — реципиента генетического материала, напоминая в этом отношении бактерии.

Как и у бактерий, в результате переноса генетического материала от одного штамма к другому происходит образование неполных зигот (мерозигот), содержащих полный геном реципиентного штамма и часть генома донорного. При этом диплоидный участок мерозиготы может варьировать как по составу, так и по протяженности, а процесс возникновения частичного диплоидного ядра происходит во времени. В отличие от бактерий, для актиномицетов характерно длительное существование стадии мерозиготы, сохраняющейся в течение ряда поколений, постепенно сменяющейся стадией образования гаплоидных рекомбинантов. В соответствии с этим у актиномицетов описаны клоны, являющиеся по своей генетической структуре мерозиготами. Они характеризуются нестабильностью и в процессе размножения выщепляют различные клоны гаплоидных рекомбинантов. Открытие таких клонов, названных гетероклонами, дало возможность разработать простой метод генетического анализа у актиномицетов, основанный на учете различных типов гаплоидных рекомбинантов в потомстве гетероклонов.

Таким образом, процесс генетической рекомбинации у актиномицетов состоит из нескольких этапов, последний из которых заключается в образовании гаплоидных рекомбинантов. Эти рекомбинанты, в отличие от гетероклонов, являются стабильными и служат основным объектом исследований в промышленных скрещиваниях. Однако необходимо иметь в виду, что вследствие неодинакового участия двух родительских штаммов в скрещивании, когда один из них поставляет только часть своего генетического материала другому, гаплоидные рекомбинанты наследуют большинство генетических факторов от одного родителя и только некоторые — от другого. Иными словами, по своей генетической структуре гаплоидные рекомбинанты, как правило, более напоминают одного родителя, чем другого, что неизбежно ограничивает возможности гибридизации у актиномицетов.

Наряду с генетической рекомбинацией у актиномицетов наблюдается другое широко распространенное явление — гетерокариозис, во многом сходное с аналогичным явлением у грибов.

Первоначально считали, что возникновение гетерокарионов между двумя штаммами представляет собой первый необходимый этап генетической рекомбинации. Однако в настоящее время имеются данные, что оба эти явления не связаны между собой причинно и происходят независимо друг от друга. Поскольку гетерокариотические клоны являются обычно нестабильными, расщеплясь при размножении на оба исходных родительских типа, гетерокариозис не может использоваться в качестве способа получения гибридных форм у актиномицетов.

1.3 Передача генетического материала посредством трансдукции

Трансдукция - передача генетического материала от одной бактерии (донора) другой (реципиенту) с помощью умеренных бактериофагов. Открыта в 1952 Дж. Ледербергом и Н. Циндером при анализе причин изменения наследств, признаков у некоторых штаммов бактерии (Salmonella typhimurium) при их совместном выращивании обнаружена у многих бактерий: сальмонелл, шигелл, бацилл, а также у актиномицетов. Установлено, что при индукции профага иногда происходит включение в зрелую фаговую частицу фрагмента бактериальной хромосомы. Фаг, несущий генетический материал бактерии, называют трансдуцирующим (ТФ). При заражении ТФ чувствительной бактерии фрагмент хромосомы донора переносится в клетку реципиента. В зависимости от типа бактериофага от донора к реципиенту переносится либо строго определённый фрагмент бактериальной хромосомы (специфическая или ограниченная трансдукция), либо любой фрагмент бактериальной хромосомы (общая или неспецифическая трансдукция). Фаги, осуществляющие специфическую трансдукцию, как правило, переносят несколько генов, а осуществляющие общую трансдукцию— 1—2% генов бактерий. В этом случае в ТФ собственная ДНК заменена аналогичным по размерам фрагментом бактериальной хромосомы. Это свойство трансдукции используется в генетическом картировании: по частоте совместного переноса двух генов судят о расстоянии между ними на хромосоме.

В случае устойчивой общей трандукции фрагмент включается в хромосому реципиента за счёт двойного кроссинговера, и в результате возникают устойчивые рекомбинанты. При абортивной общей трансдукции фрагмент донора не включается в хромосому реципиента и не реплицируется, поэтому при делении клеток сохраняется только в одной линии потомков. При ограниченной трандукции фрагмент донора включается в хромосому реципиента вместе с несущим его геномом фага, который т. о. переходит в состояние профага.

2. Генетическое картирование актиномицетов

Генетика актиномицетов исследована достаточно хорошо. Для наиболее изученных видов еще с конца 50-х гг. составлялись на основании конъюгационных скрещиваний подробные генетические карты с множеством нанесенных на них маркеров. Эти карты были кольцевыми.

Генетическое картирование проводится с помощью Днк – гибридизации. Данный метод основан на способности ДНК и РНК специфически соединяться (гибридизироваться) с комплементарными олигонуклеотидными фрагментами, искусственно синтезированными и меченными ферментом, флюорохромом или изотопом. Эти фрагменты называются зондами. Для проведения молекулярной гибридизации молекулу исследуемой ДНК расплетают, одну нить закрепляют на специальном фильтре, который помещают в раствор, содержащий меченый зонд. Создаются условия, благоприятные образованию двойных спиралей. При наличии комплементарности между зондом и исследуемой ДНК они образуют между собой двойную спираль. После окончания гибридизации и отмывания несвязавшихся продуктов проводится детекция образовавшегося комплекса при помощи соответствующей метки.

Данные о наличии перестроек генома ряда мутантов актиномицетов получены в экспериментах по ДНК - гибридизации, в которых в качестве зонда использовали 0,85 т.п.н. фрагмент плазмиды pUS8, несущий ген kmr.

Поскольку ДНК актиномицетов имеет высокий ГЦ-состав (70-74%) , для получения макрофрагментов хромосомной ДНК используются эндонуклеазы рестрикции, сайты узнавания которых содержат лишь АТ-пары. А в результате картирования актиномицетов определяют размеры хромосомной ДНК исследуемых штаммов как сумму размеров обнаруженных макрофрагментов ДНК, а также определяют длину молекулы ДНК. Дальнейшие исследования в этой области позволят сделать новые открытия в этой области.

Заключение

Таким образом, на настоящий момент у актиномицетов описана передача генетического материала с помощью плазмид, причем для данной группы микроорганизмов характерны не только кольцевые плазмиды, но также и линейные. Хорошо изучен процесс трансдукции, осуществляемый с помощью актинофага, а рекомбинация еще находится на стадии изучения.

На основании конъюгационных скрещиваний с конца 50-х годов были созданы кольцевые генетические карты актиномицетов. При создании генетических карт применяются химические и физические методы, наиболее эффективным является метод ДНК-гибридизации, осуществляемый с использованием олигонуклеотидных праймеров.


СПИСОК ЛИТЕРАТУРЫ

1. Айала Ф., Кайгер Дж. Современная генетика / Ф. Айала, Дж. Кайгер.- М.: Мир, 1987.- 368 с.

2. Гершковиш И. Генетика / И. Гершковиш. - М.: Мир, 1970. – 280 с.

3. Захаров И.А., Мацелюх Б.П. Генетические карты микроорганизмов / И.А.Захаров, Б. П. Мацелюх. - М.: Наука, 1986. – 250c.

4. Прозоров А.А. Строение генома бактерий: единство или многообразие? // Генетика. – 1995. – Т. 31. – № 6. – С. 741–752.

5. Прокофьева-Бельговская А.А. Строение и развитие актиномицетов / А.А. Прокофьева-Бельговская. – М., 1963. – 250 с.

6. Рыбчин В.Н. Основы генетичесой иженерии./ В.Н.Рыбчин. - С.-П.: Издательство СПбГТУ,1999.- 350с.

7. Сингер М., Берг Б. Гены и геномы./ М. Сингер, Б. Берг.- М.: Мир, 1998.- 394с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
ИжГТУ имени М.Т.Калашникова
Сделала все очень грамотно и быстро,автора советую!!!!Умничка😊..Спасибо огромное.
star star star star star
РГСУ
Самый придирчивый преподаватель за эту работу поставил 40 из 40. Спасибо большое!!
star star star star star
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи по математике

Решение задач, Математика

Срок сдачи к 14 дек.

только что

Чертеж в компасе

Чертеж, Инженерная графика

Срок сдачи к 5 дек.

только что

Выполнить курсовой по Транспортной логистике. С-07082

Курсовая, Транспортная логистика

Срок сдачи к 14 дек.

1 минуту назад

Сократить документ в 3 раза

Другое, Информатика и программирование

Срок сдачи к 7 дек.

2 минуты назад

Сделать задание

Доклад, Стратегическое планирование

Срок сдачи к 11 дек.

2 минуты назад

Понятия и виды пенсии в РФ

Диплом, -

Срок сдачи к 20 янв.

3 минуты назад

Сделать презентацию

Презентация, ОМЗ

Срок сдачи к 12 дек.

3 минуты назад

Некоторые вопросы к экзамену

Ответы на билеты, Школа Здоровья

Срок сдачи к 8 дек.

5 минут назад

Приложения AVA для людей с наступающим слуха

Доклад, ИКТ

Срок сдачи к 7 дек.

5 минут назад

Роль волонтеров в мероприятиях туристской направленности

Курсовая, Координация работы служб туризма и гостеприимства

Срок сдачи к 13 дек.

5 минут назад

Контрольная работа

Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления

Срок сдачи к 30 дек.

5 минут назад
6 минут назад

Линейная алгебра

Контрольная, Математика

Срок сдачи к 15 дек.

6 минут назад

Решить 5 кейсов бизнес-задач

Отчет по практике, Предпринимательство

Срок сдачи к 11 дек.

7 минут назад

Решить одну задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

9 минут назад

Решить 1 задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

10 минут назад

Выполнить научную статью. Юриспруденция. С-07083

Статья, Юриспруденция

Срок сдачи к 11 дек.

11 минут назад

написать доклад на тему: Процесс планирования персонала проекта.

Доклад, Управение проектами

Срок сдачи к 13 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно