Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Лінійний векторний простір

Тип Реферат
Предмет Астрономия
Просмотров
1517
Размер файла
41 б
Поделиться

Ознакомительный фрагмент работы:

Лінійний векторний простір

РЕФЕРАТ

на тему:

“Лінійний векторний простір”

Векторний простір (лінійний простір) - безліч елементів, які називаються векторами, для яких визначені операції додавання і множення на число. Найпростіший, але важливий приклад - сукупність векторів a, b, c, ... звичайного 3-мірного простору. Кожен такий вектор - спрямований відрізок, що задається трьома числами: ; числа називаються координатами вектора.

При множенні вектора на речове число відповідний відрізок, зберігаючи напрямок, розтягується в раз: . Сума двох векторів знаходиться за правилу параллелограмма; якщо і те .

Парі векторів a і b зіставляють також скалярний добуток (скалярним опосередкованим узагальненням З-мірного простору є n-мірнийевклідовий простір.

Його елементи - упорядковані набори речовинних чисел, Наприклад, , . Додавання і множення векторів на число визначені формулами , , а скалярний добуток - формулою Прикладом комплексного безкінечномірного векторного простору може служити сукупність комплексних функцій f, заданих на всій осі і квадратично сумованих (тобто маючих кінцевий інтеграл ). Багато класів функцій, наприклад, поліноми заданого порядку, функції безупинні, диференційовані, що інтегруються, аналітичні і тому подібні, також утворять безкінечномірні векторні простори.

У кожнім векторному просторі, крім операцій додавання і множення на число, звичайно маються ті чи інші додаткові операції і структури (наприклад, визначений скалярний добуток). Якщо ж не уточнюють природи елементів векторного простору і не припускають у ньому ніяких додаткових властивостей, то векторний простір називають абстрактним. Абстрактний векторний простір L задають за допомогою наступних аксіом:

1. будь-якій парі елементів х и у з L зіставлений єдиний елемент z, називаний їхньою сумою z=x+y і приналежний L;

2. для будь-якого числа і будь-якого елемента x з L визначений елемент z, що називається їхнім добутком і приналежний L;

3. операції додавання і множення на число є асоціативними і дистрибутивними.

Додавання допускає зворотну операцію, тобто для будь-яких х и у з L існує єдиний елемент w з L такий, що x+w=y. Крім того, мають місце формули .

Якщо всі числа речовинні (комплексні), говорять про речовинний (комплексному) векторна просторі; безліч чисел називають полем скалярів L. Поняття векторного простору можна ввести і для довільного полючи, наприклад, полючи кватерніонів.

Якщо - елементи векторного простору L, то вираження виду називається їхньою лінійною комбінацією; сукупність усіх лінійних комбінацій елементів підмножини S з L називають лінійною оболонкою S. Вектори з L називають лінійно незалежними, якщо умова ( - будь-які елементи полючи скалярів) може виконуватися тільки при . Нескінченна система векторів називається лінійно незалежної, якщо будь-яка її кінцева частина є лінійно незалежної. Безліч елементів підмножини S з L називається системою утворюючих S, якщо будь-який вектор х з S можна представити у виді лінійної комбінації цих елементів. Лінійно незалежна система утворюючих S називається базисом S, якщо розкладання будь-якого елемента S по цій системі єдино.

Базис, елементи якого яким-небудь образом параметризовані, називається системою координат у S. Базис векторного простору завжди існує, хоча і не визначається однозначно. Якщо базис складається з кінцевого числа n елементів, то векторний простір називається n-мірним (конечномірні); якщо базис - нескінченна безліч, той векторний простір називається безкінечномірні. Виділяють також лічильномірні векторні простори, у яких мається рахунковий базис.

Підмножини векторного простору L, замкнуті щодо його операцій, називаються підпросторами L. По будь-якому підпросторі S можна побудувати новий векторний простір L/S, називане фактором-простором L по S: кожен його елемент є безліч векторів з L, що розрізняються між собою на елемент із S. Розмірність L/S називається коразмірністю підпростору S у L; якщо розмірності L і S рівні відповідно n і k, те коразмірність S у L дорівнює n-k. Якщо J - довільна безліч індексів i і Si – сімейство підпросторів L, те сукупність усіх векторів, що належать кожному з Si, є підпростір, називається перетинанням зазначених підпросторів і що позначається . Для кінцевого сімейства підпросторів S1, ..., Ss сукупність усіх векторів, які представлені у виді

, xi з Si,(*)

є підпростір, називаний сумою S1, ..., Ss і що позначається S1+ ... +Ss. Якщо для будь-якого елемента суми S1+ ... +Ss представлення у виді (*) єдино, ця сума називається прямої і позначається . Сума підпросторів є прямої тоді і тільки тоді, коли перетинання цих підпросторів складається тільки з нульового вектора. Розмірність суми підпросторів дорівнює сумі розмірностей цих підпросторів мінус розмірність їхнього перетинання. Векторний простір L1 і L2 називають ізоморфним і, якщо існує взаємно однозначна відповідність між їх елементами, погоджена з операціями в них; L1 і L2 ізоморфні тоді і тільки тоді, коли вони мають однакову розмірність.

Конкретні приклади векторного простору можна знайти в математичному апараті практично будь-якого розділу фізики. Кінцевомірними речовинними векторними просторами є, наприклад, трехмерное физическое пространство(без обліку кривизни), конфигурационное пространствоі фазовое пространствосистеми n класичних крапкових часток. До числа безкінечномірних комплексних векторних просторів належать гильбертовы пространства, конкретну й абстрактну, складову основу математичного апарата квантової фізики. Найпростіший приклад гільбертова просторів уже згадуваний простір .

Основні фізичні приклади - простору векторів станів різних систем мікрочастинок, досліджуваних у квантовій механіці, квантовій статистичній фізиці і квантовій теорії поля. Знаходять застосування і такі векторні полючи, у яких поле скалярів не збігається з безліччю речовинних чи комплексних чисел: так, гільбертово простір над полем кватерніонів використовується й однієї з формулювань квантовой механики, а гільбертовий простір над полем октоніонов - в одній з формулювань квантової хромодинаміки. У сучасних теориях суперсимметрии інтенсивно застосовуються так називані градуйовані векторні полючи, тобто лінійні простори разом з їхнім фіксованим розкладанням у пряму нескінченну суму підпросторів.


Використана література:

1. Векторний простір. – М., 1992.

2. Вища математика в прикладах. – К., 1998.

3. Математична енциклопедія. – М., 1983.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно