Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Метод построения трехмерной модели формы клетки по данным светового трансмиссионного микроскопа

Тип Реферат
Предмет Биология
Просмотров
1835
Размер файла
142 б
Поделиться

Ознакомительный фрагмент работы:

Метод построения трехмерной модели формы клетки по данным светового трансмиссионного микроскопа

Курский государственный университет

Метод построения трехмерной модели формы клетки по данным светового трансмиссионного микроскопа

Курск 2009


Оглавление

Введение

Глава 1. Метод построения трехмерной модели формы клетки по данным светового трансмиссионного микроскопа

1.1 Нахождение центра клетки

1.2 Нахождение Q(z)

1.3 Построение трехмерной модели формы клетки

Вывод

Литература


Введение

Клетка – наименьшая морфофизиологическая единица живых систем. Возникновение клеточной организации – главный ароморфоз в эволюции. Только после открытия клетки (Р. Гук, 1665) и полного понимания ее значения (Т. Шван, М. Шлейден, 1839), (Р. Вирхов, 1859) стало возможным открытие многих основных закон живых систем.

Изучение клеток неразрывно связано с совершенствованием цитологических техник, которые, в конечном счете, зависят от общего научно-технического прогресса. Появление новых методов позволяло глубже и точнее понимать механизмы существования клеток. До середины 20 века существовали только методы рассмотрения плоских изображений тканей, которые не давали полной картины морфологии клетки, в частности, не было возможности достоверно узнать ее истинную форму, представить строение органелл и расположение их в цитоплазме. С появлением способов получения трехмерных изображений клеток такая возможность появилась и многие положения, сформулированные ранее, были опровергнуты.

На сегодняшний день существуют следующие методы получения трехмерных изображений клеток: конфокальная световая микроскопия (требуется конфокальный микроскоп, специальные программы обработки изображений, окрашивание флюорохромами, срез на микротоме), электронная трансмиссионная микроскопия (требуется электронный просвечивающий микроскоп, ультрамикротом, окрашивание, контрастирование, специализированные программы), сканирующая электронная микроскопия (требуется сканирующий электронный микроскоп (подача напряжения 2 МB), фиксация, окрашивание), электронная томография, интерферометрическая светочувствительная локализационная микроскопия (новейшие методы, на данный момент не имеют широкого распространения). В данной работе предлагается метод построения моделей трехмерных изображений клеток по данным светового трансмиссионного микроскопа (требуется световой просвечивающий микроскоп с видеоокуляром). Таким образом, видно, что данный метод позволяет получить представление о форме клеток и определить их объем и площадь поверхности, используя элементарную лабораторную технику.

Данный метод основан на исходном предположении о существовании одной общей функции, единой для всех клеток одного морфологического типа. Она определяется:

.

Где Q(z) – функция от координаты z в прямоугольной трехмерной системе координат, m(z) – длина отрезка, параллельного полярной оси полярной системы координат клетки, соединяющего точки границ клетки, и находящемся на расстояний z от центра клетки, через который также проходит отрезок, параллельный полярной оси и совпадающей с ней – m(0) (рис.2).

Целью работы является определение уравнения поверхности клетки в трехмерных координатах z, r, . Это комбинированная система координат: она, как и прямоугольная система, состоит из трех взаимно перпендикулярных плоскостей, однако в плоскости, перпендикулярной z, находится полярная система координат Ol:

.


Глава 1. Метод построения трехмерной модели формы клетки по данным светового трансмиссионного микроскопа

1.1 Нахождение центра клетки

Представим изображение клетки на микрофотографии со светового просвечивающего микроскопа как плоскую фигуру (назовем ее множество - точек Cellula), ограниченную одной замкнутой линией (образована от преломления света клеточной стенкой) (рис. 1). Тогда точка С называется центром клетки, если:

1. .

- максимальное расстояние от точки С до граници клетки,

– среднее расстояние от С до границы клетки.

Рис. 1. Нахождение центра клетки. Обозначения:

КС – клеточная стенка.

O – центр вспомогательной полярной системы координат.

Ol – полярная ось.

– полярный радиус фиксированной точки M.

– полярный угол фиксированной точки М.

– фиксированная точка.

– точка, принадлежащая границе клетки.

.

.

– расстояние между точками N и M.

.

– полярный радиус точки С.

- полярный угол точки С.

.

.

.

Алгоритм нахождения центра клетки (рис. 1):

1. Проведем касательную к любой точке изображения клетки, эта касательная – полярная ось полярной системе координат, данную систему назовем вспомогательной, она служит для нахождения центра клетки, а полярная система координат, построенная от центра клетки, является полярной системой клетки.

2. . Определим координаты 18 точек границы клетки с шагом в 10°. По этим значениям построим интерполяционную формулу функции, описывающей линию границы клетки. Для этого воспользуемся интерполяционной формулой Ньютона:

,

где h – шаг функции (в нашем случае ), n – число точек (18), - разность определенного порядка, .

Выберем точку , принадлежащую клеточной стенке, тогда

.

3. Решаем уравнение: , . - точка экстремума.

4. .

5. .

6. .

7. .

8. .

9. – середина D.

10. Выберем точки

,

принадлежащие клеточной стенке, найдем для них по пунктам 1 – 8. Полученные точки для каждой точки являются точками другой фигуры, построенной на серединах, максимально длинных отрезков, соединяющих точки границы клетки. Для этой фигуры (второго порядка) определим фигуру третьего порядка по пунктам 1 – 9. И так 4 раза. Фигура пятого порядка будет мала и близка к окружности, у которой есть определенный центр.

11. В фигуре пятого порядка выберем произвольную точку ее границы и по пунктам 1 – 8 определим середину максимально длинного отрезка для этой точки. Найденная точка и будет центром клетки.

В этом алгоритме работа с изображением клетки осуществляется только в пунктах 1 и 2, все остальные действия совершаются аналитически.

1.2 Нахождение Q(z)

Примем, что ось z расположена параллельно длинной оси исследуемого органа. Сделаем гистологические срезы органа в двух перпендикулярных плоскостях: параллельно длинной оси органа (оси z), и перпендикулярно ей. Функцию Q(z) будем искать на изображениях клеток, полученных на срезе, параллельном z. На изображении клетки определим ось z, а перпендикулярно ей от найденного по алгоритму из п. 1. 1 центра клетки построим полярную ось полярной системы координат клетки (рис. 2).

Рис. 2. Нахождение Q(z). Обозначения:

.

.

.

.

.

.

Алгоритм нахождения Q(z) (рис. 2).

1. Относительно полярной системы координат клетки составить интерполяционную формулу функции, описывающей контур сечения клетки, перпендикулярный оси z, по формуле 1. 1 п. 2.

2. .

3. , так как – параллелограмм.

4. .

5. Интерполируем функцию Q(z). При этом независимая переменной будет z (по пункту 3), а зависимой величина . Тогда интерполяционная формула Ньютона будет иметь вид:

.

Где , , , , .

6. Определить Q(z) по пунктам 1 - 4 для 20 клеток.

7. Для каждого коэффициента построить дискретную функцию , где N – это номер клетки в ряду исследованных. Данную функцию можно задать таблицей соответствия значений области определения и области значения. Затем найдем (среднее значение коэффициента).

8. Определим между какими клетками лежит найденное среднее значение. Та клетка из найденной пары, к значению которой лежит ближе , считается средней по данному коэффициенту .

9. После того как были найдены средние клетки по всем коэффициентам (их 20, см. пункт 4) находим частоты с которыми клетки становились средними по формуле , где p – частота, с – число коэффициентов по которым клетка становилась средней, С=20.

10. Выбираем клетку с наибольшей частотой p, ее функция Q(z) и считается функцией данного клеточного типа.

1.3 Построение трехмерной модели формы клетки

1. На гистологическом срезе, перпендикулярном z, на глаз выбираем 20 наиболее крупных клеток и выбираем среди них среднюю по алгоритмам из пунктов 1. 1 и 1. 2, однако уже не относительно координаты z, а относительно координаты y. Выбранная клетка с высокой вероятностью представляет собой среднее сечение (сечение клетки плоскостью, которая задается уравнением ). Принимаем, что граница среднего сечения описывается функцией в полярных координатах ).

2. Из уравнений и имеем общий вид уравнения поверхности клетки в трехмерных координатах:

.

2. Прейдем от прямоугольно-полярной системы к прямоугольной, тогда уравнение поверхности клетки будет иметь вид:

.

4. Введем полученное уравнение в программу Maple 8 ввиде:

> with(plots): implicitplot3d((x^2+y^2)^0.5-Q(z)*r(cos(arctan(y/x))=0,

x=-r(-0.5*π)..r(0.5*π), y=-r(π)..r(0), z=-R(-0.5*π)..R(0.5*π),

scaling=UNCONSTRAINED);.


Где R – это полярный радиус полярной системы координат клетки сечения, параллельного z.

После этого программа выведет на экран анимированную трехмерную фигуру, описываемую, данным уравнением (рис. 3).

Рис. 3. Элипсоид, построенный в Maple 8 по уравнению:

> with(plots): implicitplot3d(x^2/25+y^2/16+z^2/36=1,

x=-10..10, y=-8..8, z=-12..12, scaling=UNCONSTRAINED);.

5. Площадь поверхности клетки:

.

6. Объем клетки:

.


Вывод

Просвечивающий световой микроскоп – самое доступное средство исследования клеток, поэтому получение представления о трехмерной форме клетки при помощи него имеет более широкие возможности в плане использования большим количеством исследователей. Недостатком этого метода является то, что здесь используются физические сигналы о форме клетки (в нашем случае желтый свет, но может быть и рентгеновское излучение, и электромагнитные волны, и пучок электронов в других методах), поступающие от разных клеток, в то время как в других методам они поступают от одной клетки. Поэтому классические методы получения трехмерных изображений клеток являются значительно более точными.


Литература


1. Кудрявцев В. А., Демидович Б. П. Краткий курс высшей математики. – 6-е изд. М.: Наука. Главная редакция физико-математической литературы, 1986. – 576 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
ИжГТУ имени М.Т.Калашникова
Сделала все очень грамотно и быстро,автора советую!!!!Умничка😊..Спасибо огромное.
star star star star star
РГСУ
Самый придирчивый преподаватель за эту работу поставил 40 из 40. Спасибо большое!!
star star star star star
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи по математике

Решение задач, Математика

Срок сдачи к 14 дек.

только что

Чертеж в компасе

Чертеж, Инженерная графика

Срок сдачи к 5 дек.

только что

Выполнить курсовой по Транспортной логистике. С-07082

Курсовая, Транспортная логистика

Срок сдачи к 14 дек.

1 минуту назад

Сократить документ в 3 раза

Другое, Информатика и программирование

Срок сдачи к 7 дек.

2 минуты назад

Сделать задание

Доклад, Стратегическое планирование

Срок сдачи к 11 дек.

2 минуты назад

Понятия и виды пенсии в РФ

Диплом, -

Срок сдачи к 20 янв.

3 минуты назад

Сделать презентацию

Презентация, ОМЗ

Срок сдачи к 12 дек.

3 минуты назад

Некоторые вопросы к экзамену

Ответы на билеты, Школа Здоровья

Срок сдачи к 8 дек.

5 минут назад

Приложения AVA для людей с наступающим слуха

Доклад, ИКТ

Срок сдачи к 7 дек.

5 минут назад

Роль волонтеров в мероприятиях туристской направленности

Курсовая, Координация работы служб туризма и гостеприимства

Срок сдачи к 13 дек.

5 минут назад

Контрольная работа

Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления

Срок сдачи к 30 дек.

5 минут назад
6 минут назад

Линейная алгебра

Контрольная, Математика

Срок сдачи к 15 дек.

6 минут назад

Решить 5 кейсов бизнес-задач

Отчет по практике, Предпринимательство

Срок сдачи к 11 дек.

7 минут назад

Решить одну задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

9 минут назад

Решить 1 задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

10 минут назад

Выполнить научную статью. Юриспруденция. С-07083

Статья, Юриспруденция

Срок сдачи к 11 дек.

11 минут назад

написать доклад на тему: Процесс планирования персонала проекта.

Доклад, Управение проектами

Срок сдачи к 13 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно