Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Расчет сети IP-телефонии трафик, задержка, маршрутизатор

Тип Реферат
Предмет Коммуникации и связь
Просмотров
1189
Размер файла
208 б
Поделиться

Ознакомительный фрагмент работы:

Расчет сети IP-телефонии трафик, задержка, маршрутизатор

Некоммерческое акционерное общество

«АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ»

Кафедра Телекоммуникационных систем

Специальность 5В0719 – Радиотехника, электроника и телекоммуникации

КУРСОВАЯ РАБОТА

Дисциплина: IP-телефония и видеосвязь

Выполнил Джуматаев Е.Б. группа МРС-07-3 № зач. книжки 073013

Руководитель:ст.пр.Ожикенов М.А.

Алматы 2011

Содержание

Введение

Задание 1

1.1 Расчёт производительности узла доступа с учётом структуры нагрузки поступающей от абонентов, пользующихся различными видами услуг

1.2 Расчёт числа пакетов от первой группы (телефония)

1.3 Расчёт числа пакетов от второй группы (телефония и интернет)

1.4 Расчёт числа пакетов от третьей группы абонентов (tripleplay)

1.5 Требования к производительности мультисервисного узла доступа

Задание 2

Задание 3

Заключение

Список литературы


Введение

Курсовой проект по дисциплине «IP-телефония и видеосвязь» выполняется студентами, обучающимися по специальности 5В071900 «Радиотехника, электроника и телекоммуникации».

Дисциплина «IP-телефония и видеосвязь» изучается студентами на восьмом семестре, по окончании курса сдается экзамен. В методическом указании приводятся порядок выполнения, необходимые справочные данные, методика расчета основных параметров.

Каждый студент выполняет курсовой проект по индивидуальным исходным данным. Настоящие методические указания (МУ) имеют цель: закрепить и углубить знания, полученные на лекциях; привить студентам практические навыки самостоятельной работы со справочниками и нормативными документами; выработать у студентов творческое мышление и навыки по выбору рациональных вариантов построения магистральных сетей; изучить круг проблем, встречающихся при реальном проектировании.

По курсу читаются лекции, выполняется курсовая работа, лабораторные работы.

Целью курса «IP-телефония и видеосвязь» является изучение основных методов построения, расчета современных каналов связи.

Для освоения курса необходимо знать основные положения некоторых разделов математики, физики, теории электрической связи

Задание 1

1.1 Расчёт производительности узла доступа с учётом структуры нагрузки поступающей от абонентов, пользующихся различными видами услуг

а) сделать расчёт числа пакетов от первой группы (телефония);

б) провести расчёт числа пакетов от второй группы (телефония и интернет);

в) сделать расчёт числа пакетов от третьей группы абонентов (triple play);

г) оценить требования к производительности маршрутизатора, агрегирующего трафик мультисервисной сети доступа NGN;

д) сделать выводы.

Исходные данные для расчета приведены в таблицах 1,2,3,4.

Таблица 1 – Доля абонентов по группам

Группа абонентовПоследняя цифра номера зачетной книжки3
1Доля абонентов 1 группы, p1 в%65
2Доля абонентов 2 группы, p2 в%30
3Доля абонентов 3 группы, p3 в%5

Таблица 2 – Характеристики нагрузки, создаваемой клиентами различных групп

Последняя цифра номера зачетной книжки fi3
Вызовов в час, fi5
Средняя длительность разговора, tiминут2.5
Объём переданных данных в час наибольшей нагрузки, V2, Мбайт/с15
Объём переданных данных в час наибольшей нагрузки, V3, Мбайт/с80
Время просмотра видео в час наибол. нагрузки, Тв, минут50
Мультисервисный узел доступа обслуживает N, абонентов2800

Таблица 3 – Выбор кодеков

Предпосл. цифра номера зач.кн1
КодекиG.711u G.726-32

Таблица 4 - Параметры кодеков

Кодек

Скорость передачи,

кбит/с

Длительностьдатаграммы,

Мс

Задержка пакетизации,

Мс

Полоса пропускания для двунаправ-ленного соединения, кГцЗадержка в джиттербуфереТеоретическая максимальная оценка MOS
G.711u64201174,4

2 датаграммы,

40 мс

4,4
G.726-3232201110.4

2 датаграммы,

40 мс

4,22

1.2 Расчёт числа пакетов от первой группы (телефония)

Рассчитем число пакетов создаваемых пользователями телефонии, использующие выбранные ранее кодеки. Параметры кодеков представлены в таблице 4.

Рассчитаю параметры сети для двух кодеков соответственно варианту. Длительность дейтаграммы TPDUравна 20 мс, согласно рекомендации RFC 1889. При этом в секунду передаётся

(2.1)
nj= 1/ TPDU, (кадров в секунду)

(кадров в секунду)

Размер пакетизированных данных

(2.2)
hj = vj·TPDU

где vj – скорость кодирования, байт/с;

hj – размер пакетизированных данных;

TPDU – длительность одной речевой выборки (длительность пакета).

Рассчитать vj – скорость кодирования, байт/с; hj – размер пакетизированных данных для двух выбранных согласно варианту кодеков (индекс jсоответствует 1-первый кодек без сжатия, 2- второй кодек со сжатием).

При использовании кодека скорость кодирования

vj= RGj/8 , (байт/с),

hj = vj · TPDU, (байт).

G.711u

байт/сек

G.726-32

Для определения размера пакета необходимо учесть заголовки:

- Ip – 20 байт;

- UDP – 8 байт;

- RTP – 12 байт.

Суммарный размер пакета для кодека без сжатия


håG1 = hj + Ip + UDP+ RTP=163,84+20+8+12=203,84 байт

Суммарный размер пакета для кодека со сжатием

håG2= hj + Ip + UDP+ RTP=81,92+20+8+12=121,92 байт.

(2.3)
Для определения числа пакетов, генерируемых первой группой абонентов, необходимо учесть их долю в общей структуре пользователей, количество вызовов в час наибольшей нагрузки, среднюю длительность разговора.

N1j = n1j· t1·f1·p1·N

N1j=50·150·5·0,65·2800=68250·103

где N1j – число пакетов, генерируемое первой группой пользователей в час наибольшей нагрузки;

n1j – число пакетов, генерируемых в секунду одним абонентом;

t1 – средняя длительность разговора в секундах для первой группы абонентов;

f1 – число вызовов в час наибольшей нагрузки для первой группы абонентов;

p1 – доля пользователей группы 1 в общей структуре абонентов;

N – общее число пользователей.

1.3 Расчёт числа пакетов от второй группы (телефония и интернет)

Рассуждения, приведённые для первой группы абонентов, в полной мере можно применить и ко второй группе для расчёта числа пакетов, возникающих в результате пользования голосовыми сервисами. Разница будет лишь в индексах.

(2.4)
N2_тj = n1j· t2· f2·p2· N

N2_тj =50·150·5·0,3·2800=31500·103

где N2_тj – число пакетов, генерируемое второй группой пользователей в час наибольшей нагрузки при использовании голосовых сервисов;

n1j – число пакетов, генерируемых в секунду одним абонентом;

t2 – средняя длительность разговора в секундах для второй группы абонентов;

f2 – число вызовов в час наибольшей нагрузки для второй группы абонентов;

p2 – доля пользователей группы 2 в общей структуре абонентов;

N – общее число пользователей.

Для расчёта числа пакетов в час наибольшей нагрузки необходимо задаться объёмом переданных данных. Предположим, что абоненты второй группы относятся к интернет-сёрферам, т.е. в основном просматривают веб-страницы. Средний объём данных, переданных за час при таком способе подключения, составит около V2 необходимо выразить в битах. То есть V2 ≈ V2(Мбайт) ·8·1024·1024 бит. Число пакетов, переданных в ЧНН, будет равно

(2.5)
N2_дj = p2· N ·V2j/hj

N2_дj =0,3·2800·8388608∙15/163,84∙8=80640000 G711u

N2_дj =0,3·2800·8388608∙15/81,92∙8=161280000 G726-32

где N2_дj – количество пакетов, генерируемых в час наибольшей нагрузки абонентами второй группы при использовании сервисов передачи данных;

p2 – доля пользователей группы 2 в общей структуре абонентов;

h2j– размер поля данных пакета;

N – общее число пользователей.

Суммарное число пакетов, генерируемых второй группой пользователей в сеть в час наибольшей нагрузке, будет равно

(2.6)

N2j = N2_тj + N2_дj = 31500·103+80640000=112140000G711u

N2j = N2_тj + N2_дj = 31500·103+161280000=192780000 G726-32

1.4 Расчёт числа пакетов от третьей группы абонентов (triple play)

Все рассуждения, проведённые относительно первых двух групп, остаются в силе и для третьей группы, применительно к сервисам передачи голоса, а именно:

(2.7)

N3_тj = n1j· t3_т· f3· p3· N

N3_тj =50·150·5·0,05·2800=5250·103

где N3_т – число пакетов, генерируемое третьей группой пользователей в час наибольшей нагрузки при использовании голосовых сервисов;

n1j – число пакетов, генерируемых в секунду одним абонентом;

t3 – средняя длительность разговора в секундах;

f3 – число вызовов в час наибольшей нагрузки;

p3 – доля пользователей группы 3 в общей структуре абонентов;

N – общее число пользователей.

Предположим, что абоненты третьей группы относятся к «активным» пользователям интернета, т.е., используют не только http, но и ftp, а также прибегают к услугам пиринговых сетей. Объём переданных и принятых данных данных при таком использовании интернета составляет до V3 . Число пакетов, переданных в ЧНН, будет равно


N3_дj = p3· N · V3/hj

G711u

G723-23

Для расчёта числа пакетов, генерируемых пользователями видео-услуг, воспользуемся соображениями относительно размера пакета, приведёнными в предыдущем пункте. Размер пакета не должен превосходить 200 (120) байт (вместе с накладными расходами).

(2.9)
Например, при скорости передачи v = 2048000 бит/с и размере полезной нагрузки пакета hj число пакетов, возникающих при трансляции одного канала, равно:

n3j = v/ hj

G711u

G723-32

Количество пакетов, передаваемых по каналами в ЧНН, составит

(2.10)
N3 i_Вj = p3· N· n3 i · t3_В

N3 i_Вj = 0,05·2800·50·150=1050000

где N3j – число пакетов, генерируемое третьей группой пользователей в час наибольшей нагрузки при использовании видео-сервисов сервисов;

n3j – число пакетов, генерируемых в секунду одним абонентом при использовании просмотре видео, сжатого по стандарту MPEG2;

t3_В – среднее время просмотра каналов в ЧНН, сек;

p3 – доля пользователей группы 3 в общей структуре абонентов;

N – общее число пользователей.

Суммарное число пакетов, генерируемых третьей группой пользователей в сеть в час наибольшей нагрузке, будет равно

(2.11)

N3j = N3j + N3j+ N3j

N3j =5250·103+71,68·106+1050000= 77980·103G711u

N3j =5250·103+143,4·106+1050000= 149700·103G723-32

1.5 Требования к производительности мультисервисного узла доступа

Мультисервисный узел доступа должен обслуживать трафик от всех трёх групп пользователей. Кроме того, именно узел доступа должен обеспечить поддержку качества обслуживания путем приоритезации трафика, которая должна осуществляться независимо от используемой технологии транспортной сети доступа.

Суммарное число пакетов, которое должен обработать мультисервисный узел доступа, будет равно:

NjΣj = N1j + N2j + N3j = n1j· t1·f1·p1·N + (n1j· t2· f2· p2· N + p2· N · V2/hj) +

(2.12)
+ (n1j· t3·f3·p3· N + p3·N ·V3/hj + p3· N · n3j · t3_В)

Учитывая, что:

t1 = t2 = t3 = t– средняя длительность разговора в секундах;

f3 = f2 = f1 = f – число вызовов в ЧНН;

получим

(2.13)
NjΣj = n1j · t· f ·N · (p1 + p2 + p3) + N/hj · (p2·V2 + p3·V3) + p3· N · n3j · t3В

Учитывая, что p1 + p2 + p3 = 1, получим

(2.14)

NΣj = N · (n1j· t· f+ ( p2·V2 + p3·V3)/hj) + p3· N · n3j· t3_В

NΣj = 258370000 G711u

NΣj = 410730000 G726-32

Среднее число пакетов в секунду рассчитывается для двух выбранных кодеков и равно

(2.15)

NΣ_секj = NΣj/3600

NΣ_секj =258370000/3600=71769,4 G711u

NΣ_секj =410730000/3600=114092 G726-32

Данные показатели позволяют оценить требования к производительности маршрутизатора, агрегирующего трафик мультисервисной сети доступа NGN. Анализ Приложения А показывает, что выбор такого маршрутизатора осуществляется из весьма ограниченного количества вариантов.

Анализируется как и какие группы сети больше всего загружают систему для рассчитываемых длин пакетов. Для этого формируется таблица 5 и строится диаграмма рисунок 1.

Таблица 5 - количество передаваемых пакетов в сек для трех групп пользователей

Количество передаваемых пакетов в сек
G.711uG.726-32
1 группа (p1),%68250·10368250·103
2 группа (p2) ,%112140∙103192780∙103
3 группа (p3) ,%77980·103149700∙103

Рисунок 1 – Доли передаваемых пакетов тремя группами

Вывод о загрузке системы пользователями трех групп.

Из графика видно, что наибольший передаваемый трафик идет на 2-ую группу при кодеке G.711u и G.726-32 от общего числа пользователей. Пользователи обычной телефонии, при ее преобладающем количестве, загружают систему меньше всех.

Задание 2

а) рассчитать среднее время задержки пакета в сети доступа

б) рассчитать интенсивность обслуживания пакета при норме задержки = 5 мс для двух типов кодеков.

в) построить зависимость максимальной величины для средней длительности обслуживания одного пакета от среднего времени задержки в сети доступа.

г) определить коэффициент использования системы для случаев с различными кодеками.

д) построить зависимости при помощи прикладной программы MathCad.

ж) сделать выводы по задачам 1 и 2.

Требования к полосе пропускания определяются гарантиями качества обслуживания, предоставляемыми оператором пользователю. Параметры QoS описаны в рекомендации ITUY.1541. В частности, задержка распространения из конца в конец при передачи речи не должна превышать 100 мс, а вероятность превышения задержки порога в 50 мс не должна превосходить 0,001, т.е.

, мс

p{tp > 50 мс} ≤ 0.001

Задержка из конца в конец складывается из следующих составляющих:

(2.16)

tp = tпакет + tад + tcore + tад + tбуф


где tp – время передачи пакета из конца в конец;

tпакет – время пакетизации (зависит от типа трафика и кодека);

tад – время задержки при транспортировке в сети доступа;

tcore – время задержки при распространении в транзитной сети;

tбуф – время задержки в приёмном буфере.

Допустим, что задержка сети доступа не должна превышать 5 мс. Время обработки заголовка IP-пакета близко к постоянному.Распределение интервалов между поступлениями пакетов соответствует экспоненциальному закону. Поэтому для описания процесса, происходящего на агрегирующем маршрутизаторе, можно воспользоваться моделью M/G/1.

Для данной модели известна формула, определяющая среднее время вызова в системе (формула Полячека – Хинчина) /9/.

(2.17)

где j – средняя длительность обслуживания одного пакета;

– квадрат коэффициента вариации, 0,2;

j– параметр потока, из первой задачи Nå_секj ;

j – среднее время задержки пакета в сети доступа, = 0,005 с.

Из формулы (2.17) следует зависимость максимальной величины для средней длительности обслуживания одного пакета от среднего времени задержки в сети доступа.


(2.18)

Построим данные зависимости при помощи прикладной программы MathCad.

Рисунок 2 - Зависимость максимальной величины для средней длительности обслуживания одного пакета от среднего времени задержки в сети доступа для кодека G.711u

Рисунок 3 - Зависимость максимальной величины для средней длительности обслуживания одного пакета от среднего времени задержки в сети доступа для кодека G.726-32

Интенсивность обслуживания связана со средним временем задержки пакета в сети доступа обратно пропорционально:

(2.19)

Время tj должно выбираться как минимальное из двух возможных значений. Первое значение – величина, полученная из последней формулы. Второе значение – та величина, которая определяется из условия ограничения загрузки системы – r. Обычно эта величина не должна превышать 0,5.

При среднем значении задержки в сети доступа 5 мс коэффициент использования равен:

(2.20)

Рассчитать коэффициент использования для случаев с различными кодеками.

При таком высоком использовании малейшие флуктуации параметров могут привести к нестабильной работе системы. Определим параметры системы при её использовании на 50%. Средняя длительность обслуживания будет равна

(2.21)

Определим интенсивность обслуживания при этом

(2.22)

Задержка в сети доступа рассчитывается по формуле:


(2.23)
, (секунд)

Рассчитывать вероятность s(t)=при известных λ и τ нецелесообразно, т.к. в Y.1541 вероятность P{t>50мс} < 0.001 определена для передачи из конца в конец.

При известном среднем размере пакета hj определить требуемую полосу пропускания

jj = βj×hj(бит/с)

jj =71890×163,84×8=94227661 бит/с=89,863 Мбит/с

jj =114200×81,92×8=74842112 бит/с=71,375 Мбит/с

Сравним полученные результаты (рисунок 4.)

Рисунок 4 – Отображения результатов расчета: требуемая полоса пропускания

Из графика видно, что для передачи одной и той же информации, то есть одного объема при использовании услуги TriplePlay, необходима различная полоса пропускания. Предположим, что в структурном составе абонентов отсутствуют группы пользователей использующие видео, т.е. p»p2+p2. При этом в вышеприведённом анализе следует опустить расчёт числа пакетов, возникающих при использовании сервисов высокоскоростной передачи данных и видеоуслуг.

Число генерирующих пакетов, возникающих в ЧНН, будет равно

где Ntel – число пакетов телефонии, генерируемое всеми пользователямив час наибольшей нагрузки;

Nint – число пакетов интернета, генерируемое второй группой пользователей в час наибольшей нагрузки

p – доля пользователей группы 2 в общей структуре абонентов

nj – число пакетов, генерируемых в секунду одним абонентом при использовании кодека G.711u;

t– средняя длительность разговора в секундах;

f – число вызовов в час наибольшей нагрузки;

N – общее число пользователей.

Число пакетов в секунду:

Среднее время обслуживания одного пакета при норме задержки 5 мс:

Коэффициент использования:

При использовании системы на 50%:


Требуемая пропускная способность:

φj = βj×hj , (бит/с)

φj = 103700163,848=135900000 бит/с=129,625 Мбит/с

φj = 14890081,928=97580000 бит/с=93,063 Мбит/с

Сравним полученные результаты (рисунок 5)

Рисунок 5 – Отображения результатов расчета: требуемая полоса пропускания

Из графика видно, что для передачи информации одного объема, необходима различная полоса пропускания, в данном случае при использовании кодека G.711uс длиной пакета 203,84 байт необходима большая полоса пропускания, чем при использовании кодека G.726-32 с длиной пакета 121,92 байт.

Построенная модель рассчитывает параметры сети, а именно время и интенсивность обслуживания одного ip пакета определенной длины, от времени задержки в сети доступа.


Задание 3

а) Провести расчет математической модели эффекта туннелирования в MPLS , применив MATHCAD или другую программу;

б) Рассчитать времени пребывания пакета в туннеле из N узлов V1 (N);

в) рассчитать время пребывания пакета в LSP- пути без туннеля V2(N);

г)на основе результатов расчета сравнить различные варианты и сделать выводы о возможности организации туннеля между первым узлом и узлом N.

Исходные данные для расчета приведены в таблице 6.

Таблица 6- Данные к расчету

Первая буква фамилииД
число маршрутиза-торов N25
Посл.цифра № зач.кн3
ρ10,70
ρ20,80
ρ30,90
Предпоследняя цифра номера зач. Книжки1
, с-1800
m1,03

Выполнение задания 3

Эффект от организации туннеля, равен разности V1 и V2. При этих предположениях предлагается следующий алгоритм:

Шаг 1. Полагается N = М.

Шаг 2. Для n = 1,2, ..., N определяются величины размера пачки в Kn по формуле

(3.2)

.

Шаг 3. Определяется время V2(N) пребывания пакета в LSP - пути сети MPLS из N узлов (маршрутизаторов) без организации LSР - туннеля при наличии ограниченной очереди к узлу n длиной Kn по формуле

(3.3)
.

абонент телефония маршрутизатор трафик

Шаг 4. Определяется время V1(N) пребывания пакета в LSР - туннеле из N узлов по формуле (1)

Рисунок 6 – Зависимость времени пребывания пакета в LSР - туннеле от количества узлов при r=0,7

Шаг 5. Сравниваются величины V1(N) и V2(N). При положительной разнице V1(N) и V2(N) организация туннеля между первым узлом и узлом N не представляется целесообразной. В противном случае принимается решение организовать туннель между первым узлом и узлом n, и работа алгоритма завершается.

Рисунок 7 - Зависимость времени пребывания пакета в LSР - туннеле от количества узлов при при r=0,8

Рисунок 8 - Зависимость времени пребывания пакета в LSР - туннеле от количества узлов при r=0,9

Выигрыш во времени от организации туннеля равен разности V1 и V2 Нагрузка на LSP колеблется в диапазоне от р=0,7 до р=0,9. Результаты расчетов представлены на рисунках 6-8.

На этих рисунках видно, что при р=0,7 и р=0,80 организация туннеля не требуется, а при р=0,9 эффективна организация туннеля при N≥14.

Заключение

Проделав данную курсовую работу, и построив графики зависимостей различных величин, можно сделать следующие выводы:

- объем передаваемой информации обратно пропорционален полосе пропускания канала;

- число передаваемых кадров прямо пропорционально объему передаваемой информации;

- скорость обслуживания кадров обратно пропорциональна общей длине кадра;

- степень использования канала связи обратно пропорциональна скорости обслуживания; степень использования канала связи прямо пропорциональна скорости поступления кадров; степень использования канала связи прямо пропорциональна объему передаваемой информации.

- среднее число кадров, одновременно находящихся в системе обратно пропорционально скорости обслуживания; среднее число кадров, одновременно находящихся в системе прямо пропорционально объему передаваемой информации.

Cписок литературы

1. Будников В.Ю., Пономарев Б.А. Технологии обеспечения качества обслуживания в мультисервисных сетях / Вестник связи.- 2000.- №9.

2. Варакин Л. Телекоммуникационный феномен России / Вестник связи International.- 1999.- №4.

5. Варламова Е. IP-телефония в России/Connect! Мир связи.- 1999.- №9.

3 Гольдштейн Б.С. Сигнализация в сетях связи.-т. 1.- М.: Радио

и связь, 1998.

4 Гольдштейн Б.С., Ехриель И.М., Рерле Р.Д. Интеллектуальные сети.- М.: Радио и связь, 2000.

5. Кузнецов А.Е., ПинчукА. В., Суховицкий А.Л. Построение сетей IP-телефонии


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно