Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Пороги и методы фильтрации речевого сигнала в вейвлет области

Тип Реферат
Предмет Коммуникации и связь
Просмотров
1457
Размер файла
148 б
Поделиться

Ознакомительный фрагмент работы:

Пороги и методы фильтрации речевого сигнала в вейвлет области

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

“БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ”

кафедра Сетей и устройств телекоммуникаций

РЕФЕРАТ

На тему:

«Пороги и методы фильтрации речевого сигнала в вейвлет области»

МИНСК, 2008

Жесткий порог фильтрации речевого сигнала.

Жесткий порог фильтрации устанавливается для каждого уровня вейвлет разложения.

Данный порог реализуется следующим образом:

- на i-м уровне разложения вычисляется уровень порога по формуле

, (1)

где – значение вейвлет-отсчета с максимальной амплитудой; –количество ненулевых вейвлет-отсчетов.

В процентном соотношении данное выражение имеет вид

, (2)

где – величина порога в процентах;

- поэлементное сравнение всех ненулевых элементов N-го уровня с заданным порогом и обнуления всех отчетов, равных или меньше данного уровня.

Достоинства данного метода пороговой обработки:

- самая маленькая вычислительная сложность из рассмотренных методов.

Недостатки данного метода пороговой обработки:

- возможность полной потери полезного сигнала при высоком уровне

шума;

- возможность потери полезного сигнала также и при малом уровне шума.


Блок схема алгоритма фильтрации с жестким порогом представлена на рис. 1.

Рис. 1. Блок схема алгоритма фильтрации с жестким порогом

На рис. 2 слева представлены графики двух уровней вейвлет-разложения речевого сигнала (первого и второго детализирующего уровня и второго аппроксимационного уровня), а справа – графики вейлет-коэффициентов после пороговой обработки.

Рис. 2 Графики двух уровней вейвлет-разложения речевого сигнала и вейлет-коэффициентов после пороговой обработки

Гибкий порог фильтрации речевого сигнала.

При данном виде фильтрации для задания порога используется количественная оценка вейвлет-коэффициентов на каждом уровне разложения.

Данный метод заключается в следующем:

- на i-м уровне разложения вычисляется количество ненулевых вейвлет-коэффициентов ;

- вычисляется количество обнуляемых вейвлет-коэффициентов на i-м уровне по следующей формуле

, (3)

где – количество уровней вейвлет-разложения; – номер уровня разложения;

- устанавливается порядок обнуления вейвлет-коэффициентов: удаление элементов с минимальной или максимальной амплитудой.

Достоинства данного метода пороговой обработки:

- возможность достижения компромисса между качеством речевого сигнала и вычислительной сложностью;

- гибкость фильтрации зашумленного речевого сигнала.

Недостатки данного метода пороговой обработки:

- невозможность точно определить границы сигнала и шума.


Блок схема алгоритма фильтрации с гибким порогом представлена на рис. 3.

Рис. 3. Блок схема алгоритма фильтрации с гибким порогом

На рисунке 4 слева представлены графики двух уровней вейвлет-разложения речевого сигнала (первого и второго детализирующего уровня и второго аппроксимационного уровня), а справа – графики вейлет-коэффициентов после пороговой обработки.

Рис. 4 Графики двух уровней вейвлет-разложения речевого сигнала и вейлет-коэффициентов после пороговой обработки

Статистический метод фильтрации речевого сигнала.

Предложен эффективный метод фильтрации речевого сигнала, использующий статистику распределения амплитуды вейвлет-коэффициентов на каждом i-м уровне разложения.

Суть реализация метода заключается в следующем:

- определение на i-м уровне вейвлет-коэффициента с одинаковой амплитудой (с или без учета знака) и максимальной частотой повторения;

- обнуление данных коэффициентов на каждом i-м уровне разложения;

- повторение предыдущих шагов с учетом достижения требуемого коэффициента сжатия при сохранении приемлемого качества восстановленного речевого сигнала.

Достоинства данного метода пороговой обработки:

- улучшение коэффициента сжатия и качества восстановленного речевого сигнала;

- наименьшая потеря полезного сигнала;

- возможность эффективного устранения избыточности в частотной области;

- эффективность фильтрации шумов, с большой длительностью.

Недостатки данного метода пороговой обработки: - высокая вычислительная сложность.

Блок схема алгоритма фильтрации статистическим методом представлена на рис. 5.

Рис. 5. Блок схема алгоритма фильтрации статистическим методом

На рис. 6 слева представлены графики двух уровней вейвлет-разложения речевого сигнала (первого и второго детализирующего уровня и второго аппроксимационного уровня), а справа – графики вейлет-коэффициентов после пороговой обработки.


Рис. 6 Графики двух уровней вейвлет-разложения речевого сигнала и вейлет-коэффициентов после пороговой обработки

Оценка качества восстановленного речевого сигнала.

Оценка качества речевого сигнала является важной задачей. Отношение сигнал/шум (ОСШ), являющееся одной из наиболее распространенных объективных мер для оценки качества фильтрации зашумленного речевого сигнала, задается выражением

, (4)

где s(n) и – выборочные значения исходного и восстановленного речевого сигнала соответственно;M – общее число выборок в пределах речевого сигнала.

Данное ОСШ является интегральной мерой качества восстановления речи. Более точной мерой, учитывающей присутствие в речевом сигнале низко амплитудных компонент, является сегментное ОСШ (СЕГОСШ), основанное на вычислении кратковременного ОСШ для каждого N-точечного сегмента речи

, (5)

где L и N – число сегментов и отсчетов в сегменте речевого сигнала соответственно; i – номер сегмента речевого сигнала;M=LN – число отсчетов речевого сигнала, состоящего из Lсегментов с N отсчетами.

Так как операция усреднения осуществляется после логарифмирования, то СЕГОСШ более точно оценивает качество фильтрации нестационарного речевого сигнала.

На рис. 7 представлен график зависимости ОСШ сигнала и коэффициента сжатия при фильтрации речевого сигнала статистическим методом.

Из рис. 7 видно что ОСШ экспоненциально убывает с увеличением коэффициента сжатия. Например при коэффициенте сжатия 3 ОСШ равно 3,2.

Рис. 7. График зависимости ОСШ сигнала и коэффициента сжатия при фильтрации речевого сигнала статистическим методом

Обзор методов повышения качества и разборчивости зашумленных речевых сигналов показывает, что существует много различных подходов к обработке зашумленной речи. Такое разнообразие методов обусловлено как важностью проблемы так и отсутствием достаточно надежных методов ее решения. Объективное сравнение этих методов и выбор наиболее приемлемых сделать весьма затруднительно, так как перед системами коррекции речевых сигналов ставятся различные задачи. Например, можно в качестве главного критерия использовать повышение разборчивости речи, допуская при этом возможность искажений в тембре голоса или появление артефактов в виде структурированного шума. Можно поставить целью понижение утомляемости аудитора или сохранение натуральности голоса диктора, что достигается в основном за счет повышения качества речевого сигнала. Наконец, могут быть известны заранее важные априорные сведения, например тип или параметры шума, характеристики голоса диктора, наконец, гипотезы о произносимом тексте, что также может определяющим образом повлиять на выбор метода фильтрации. Важно отметить, что универсальных методов обработки, которые одинаково хорошо боролись бы с существенно нестационарными и стационарными, аддитивными и мультипликативными шумами, существенно повышали бы качество и одновременно разборчивость речи, сейчас нет, и возможно не будет. Как типичная (за редкими, указанными в обзоре исключениями, наблюдается обратная тенденция: если сравнивать системы обработки зашумленной речи по двум показателям - повышению качества звучания речевых сигналов и повышению разборчивости, то системы, повышающие качество и натуральность звучания, скорее всего снижают разборчивость и наоборот, повышение разборчивости приводит к понижению качества и натуральности звучания. Поэтому, многие из названных методов фильтрации нужно рассматривать как взаимодополняющие, и в идеальном случае нужно иметь библиотеку из нескольких методов фильтрации. Рассматривая последние тенденции в области обработки зашумленных сигналов, следует особенно выделить высокие результаты, полученные за счет использования математических моделей речевых сигналов, а также использование нейроподобных структур для фильтрации аддитивных стационарных шумов, хотя первые результаты в этом направлении проигрывают более традиционным методам типа минимальной среднеквадратической оценки.


Литература

1. Шелухин О.И., Лукьянцев Н.Ф. Цифровая обработка и передача речи.- М.: Радио и связь, 2000.

2. Рабинер Л.Р., Шафер Р.В. Цифровая обработка речевых сигналов.-М.: Радио и связь, 20011.

3. Секунов Н.Ю. Обработка звука на PC.- СПб.: БХВ-Петербург, 2001.

4. Нейрокомпьютеры в системах обработки изображений. – М.: Радиотехника, 2003.

5. Назаров М.В., Прохоров Ю.Н. Методы цифровой обработки и передачи речевых сигналов.- М.: Радио и связь, 2005.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
ИжГТУ имени М.Т.Калашникова
Сделала все очень грамотно и быстро,автора советую!!!!Умничка😊..Спасибо огромное.
star star star star star
РГСУ
Самый придирчивый преподаватель за эту работу поставил 40 из 40. Спасибо большое!!
star star star star star
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи по математике

Решение задач, Математика

Срок сдачи к 14 дек.

только что

Чертеж в компасе

Чертеж, Инженерная графика

Срок сдачи к 5 дек.

только что

Выполнить курсовой по Транспортной логистике. С-07082

Курсовая, Транспортная логистика

Срок сдачи к 14 дек.

1 минуту назад

Сократить документ в 3 раза

Другое, Информатика и программирование

Срок сдачи к 7 дек.

2 минуты назад

Сделать задание

Доклад, Стратегическое планирование

Срок сдачи к 11 дек.

2 минуты назад

Понятия и виды пенсии в РФ

Диплом, -

Срок сдачи к 20 янв.

3 минуты назад

Сделать презентацию

Презентация, ОМЗ

Срок сдачи к 12 дек.

3 минуты назад

Некоторые вопросы к экзамену

Ответы на билеты, Школа Здоровья

Срок сдачи к 8 дек.

5 минут назад

Приложения AVA для людей с наступающим слуха

Доклад, ИКТ

Срок сдачи к 7 дек.

5 минут назад

Роль волонтеров в мероприятиях туристской направленности

Курсовая, Координация работы служб туризма и гостеприимства

Срок сдачи к 13 дек.

5 минут назад

Контрольная работа

Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления

Срок сдачи к 30 дек.

5 минут назад
6 минут назад

Линейная алгебра

Контрольная, Математика

Срок сдачи к 15 дек.

6 минут назад

Решить 5 кейсов бизнес-задач

Отчет по практике, Предпринимательство

Срок сдачи к 11 дек.

7 минут назад

Решить одну задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

9 минут назад

Решить 1 задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

10 минут назад

Выполнить научную статью. Юриспруденция. С-07083

Статья, Юриспруденция

Срок сдачи к 11 дек.

11 минут назад

написать доклад на тему: Процесс планирования персонала проекта.

Доклад, Управение проектами

Срок сдачи к 13 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно