Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Динамика биологических мембран. Подвижность белков и липидов

Тип Реферат
Предмет Биология
Просмотров
575
Размер файла
26 б
Поделиться

Ознакомительный фрагмент работы:

Динамика биологических мембран. Подвижность белков и липидов

РЕФЕРАТ

на тему: «Динамика биологических мембран. Подвижность липидов и белков»

Выполнила:

студентка2курса 5группы

О.А. Гольцова

Проверил:

ст. преподаватель Д.В.Коврижных


Структурная основа биологических мембран - билипидный слой. В продольной плоскости биологическая мембрана представляет собой сложную мозаику из разнообразных липидов и белков, причем их распределение по поверхности биологической мембраны неоднородно. В некоторых биологических мембранах имеются обширные участки билипидного слоя, практически свободные от белков (напр., в эритроцитах белки занимают только 35% площади поверхности всей мембраны биологической, в микросомах-23%). При высоком содержании белка в биологических мембранах липиды не образуют сплошной бислой, а располагаются в виде отдельных вкраплений между белковыми молекулами. Сам билипидный слой в мембране может иметь доменную структуру в результате, напр., сосуществования несмешиваемых липидных фаз, находящихся в двух различных физ. состояниях - гелевом и жидкокристаллическом. Часть липидов в биологических мембранах может находиться также в составе так называемых небислойных фаз (мицеллярная фаза, гексагон. фаза и др.).

Липиды - основной строительный материал, из которого формируются клеточные мембраны. Сложность, многообразие и изменчивость липидного состава мембран позволяет предположить, что они участвуют также в регуляции важнейших мембранных процессов. Основные липидные компоненты биологических мембран - фосфолипиды, гликолипиды и стерины. Каждая группа этих липидов представлена большим числом разнообразных соединений. Так, в мембране эритроцитов человека содержится не менее 20 различных представителей основного фосфолипида этой мембраны - фосфатидилхолина; в целом же в мембране эритроцитов идентифицировано ок. 200 различных липидов.

Мембранные белки. Молекулярная масса мембранных белков обычно варьирует в пределах от 10 тыс. до 240 тыс. Они значительно различаются между собой по прочности связывания с мембраной. Белки, наз. периферическими или поверхностными, сравнительно слабо связаны с мембраной и отделяются от нее в мягких условиях, напр. в растворах, имеющих высокую ионную силу или содержащих комплексоны. Намного прочнее связаны с мембраной так называемые интегральные, или внутримембранные, белки . Чтобы их выделить, требуется, как правило, предварительно разрушить мембрану с помощью ПАВ или орг. растворителей.

Мембранные белки наряду с липидами играют важную структурную роль, кроме этого они ответственны за выполнение подавляющего большинства специализированных функций отдельных мембран. Они служат катализаторами протекающих в мембранах и на их поверхности реакций (дыхание), участвуют в рецепции гормональных и антигенных сигналов и т.п. (аденилатциклаза), выполняют транспортные функции, обеспечивают пиноцитоз (захват клеточной поверхностью и поглощение клеткой жидкости), хемотаксис (перемещение клетки, обусловленное градиентом концентраций вещества в среде) и т.п. Многие из периферических белков-компоненты цитоскелета (совокупность филаментов и микротрубочек цитоплазмы) и связанных с ним сократитительных элементов, которые обусловливают форму клетки и ее движение.

Динамические свойства биологических мембран обусловлены текучестью билипидного слоя, гидрофобная область которого в жидкокристаллическом состоянии имеет микровязкость, сравнимую с вязкостью легкой фракции машинного масла. Поэтому молекулы липидов, находящиеся в бислое, обладают довольно высокой подвижностью и могут совершать разнообразные движения - поступательные, вращательные и колебательные.

В случае липидов большой вклад в подвижность дают внутримолекулярные движения углеводородных цепей. Они происходят путем гош-транс-поворотов смежных звеньев углеводородной цепи вокруг связи С—С. Благодаря высокой конформационной подвижности цепей в них постоянно возникают изгибы и изломы, что приводит к нарушению регулярного расположения липидных молекул в бислое и к появлению в нем дефектов упаковки, называемых "кинки" и "джогги".

Внутримолекулярная подвижность различных участков липидной молекулы, находящейся в бислое, неодинакова. Наименьшей подвижностью обладает глицериновый остов молекулы, который служит как бы жестким "якорем", ограничивающим движения близлежащих участков углеводородных цепей. По направлению к середине бислоя подвижность цепей возрастает и становится максимальной в области концевых метильных групп. Довольно высокой недвижностью обладает также полярная головка липидной молекулы.

Помимо движений отдельных участков липидной молекулы относительно друг друга в жидкокристаллическом бислое происходят также движения всей молекулы как единого целого. Они включают: аксиальное вращение молекулы вокруг ее длинной оси, перпендикулярной к плоскости бислоя, маятниковые и поплавочные колебания молекулы относительно ее равновесного положения в бислое, перемещение молекулы вдоль бислоя (латеральная диффузия) и перескок ее с одной стороны бислоя на другой. Все эти движения совершаются с разными скоростями.

Аксиальное вращение липидных молекул происходит очень быстро с частотой порядка 107-108с-1, тогда как латеральная диффузия осуществляется гораздо медленнее. Тем не менее при среднем коэффициенте латеральной диффузии липидов ок. 10-8см, измеренном для многих биологических мембран, липидной молекуле потребуется всего 1 с, чтобы промигрировать от одного конца клетки до другого. Очень медленно протекает в липидном бислое флип-флоп. Обычно полупериод флип-флопа составляет величины порядка нескольких часов или даже дней. Однако в некоторых мембранах скорость флип-флопа может быть значительно выше (полупериод 1-2 мин), что объясняется участием определенных интегральных белков в переносе липидных молекул через мембрану.

Иммобилизация липидов может происходить в результате латерального фазового разделения, приводящего к образованию гелевой фазы, или при их взаимодействии с белками. Предполагается, что интегральные белки окружены пограничным слоем липидных молекул , подвижность которых ограничена или, по крайней мере, нарушена в результате контакта с неровной поверхностью белковой глобулы.

Внутримолекулярная динамика мембранных белков изучена меньше, чем липидов. Известно лишь, что боковые заместители на тех участках полипептидной цепи, которые погружены в билипидный слой, в значительной мере иммобилизованы. Многие мембранные белки способны легко диффундировать вдоль мембраны и обладают довольно высокой вращательной подвижностью. Но даже в случае самых подвижных белков измеряемые коэффициентом диффузии примерно на порядок ниже, чем для липидных молекул. Времена вращательной релаксации для интегральных белков лежат в диапазоне от 20 до 500 мкс, а коэф. латеральной диффузии (вдоль бислоя) варьирует от 7.10-9 до 10-12см2.с-1.

Для объяснения наиболее общих механизмов функционирования и регуляции живой клетки предлагается новый принцип - принцип жизненной динамики или динамики всех физико-химических процессов в ней. Принцип может быть сформулирован следующим образом: "Существование живой клетки невозможно без непрерывного, саморегулирующегося процесса распада и образования связей самой различной природы (ионных, ковалентных, водородных, а также ион-дипольных, ориентационных, индукционных, дисперсионных и гидрофобных взаимодействий) в системе биологических мембран, включающей и мембраны клеточных органелл".

Учитывая центральную роль биологических мембран в регуляции клеточного метаболизма, жизненная динамика должна включать всю совокупность процессов возникновения и распада внутри- и межмолекулярных взаимодействий и вызываемых ими движений молекул, сложных молекулярных комплексов и надмолекулярных образований в живой клетке. Сюда входят реакции свободнорадикального окисления липидов биологических мембран, которые вместе с процессами гидролиза богатых энергией соединений могут вызывать структурные и конформационные изменения в мембранах и приводить к латеральным (в плоскости мембраны) и трансферальным (перпендикулярно к ней) автоколебательным движениям структурных компонентов биомембран.

Такие автоколебательные движения обеспечивают трансмембранный транспорт биологически важных веществ и продуктов их взаимодействия с соединениями и ионами из окружающей клетку среды и с метаболитами, образующимися на обеих поверхностях биомембран, а также синхронизируют во времени и пространстве функционирование мембраносвязаных и свободных ферментов, находящихся в околомембранном пространстве.

Следует подчеркнуть особое значение автоколебаний биологических мембран для транспорта молекул, их ассоциатов и ионов. Колеблющиеся участки мембран могут выполнять при этом роль своеобразного насоса, в основании действия которого лежит в среднем направленное вибрационное перемещение частиц под действием в среднем ненаправленных периодических сил.

В целом, описанное выше сочетание процессов может обеспечивать их пространственно-временную упорядоченность, т. е., организацию живой клетки как целостной, открытой (непрерывно обменивающейся веществом, энергией и информацией с внешней средой), неоднородной, динамической системы, которая саморегулируется и самовоспроизводится. В такой системе компартментализация играет роль важнейшего фактора регуляции, с помощью которого осуществляется координация функций всех других регуляторных систем, включая генетические, и обеспечивается динамический порядок: все необходимое доставляется в соответствующее место, в определенное время и в необходимом количестве.

Значение организации для биологических систем А. Сент-Дьерди определил следующим образом: "Один из основных принципов биологии организация; это означает, что две системы, составленные вместе определенным образом, образуют новую единицу - систему, свойства которой не аддитивны и не могут быть описаны посредством свойств составляющих ее частей". Именно образование и поддержание организации живой клетки, как целостной, открытой, неоднородной, динамической системы, способной к саморегуляции и самовоспроизводству, представляет собой фундаментальное отличие жизненной динамики от любой другой совокупности физико-химических процессов. В ходе эволюции от одноклеточных к многоклеточным организмам со специализацией клеточных функций динамика отдельных клеток определила (и в этом объяснение термина "жизненная") динамику поведения образований более высоких уровней - тканей, органов и целостных организмов, как открытых целостных систем иерархического строения. При этом важнейшим связующим звеном в динамике всех систем организма являются процессы, которые протекают на плазматической мембране, отделяющей клетку от внешней среды. По словам Т. Уотермена: "Свойства плазматической мембраны лежат в основе специфического потока веществ и энергии в организм и из него, а, следовательно, и в основе характеристик организма, как открытой системы". При таком подходе генному аппарату клетки неизбежно остается роль фактора стабильности при ее самовоспроизводстве и функционировании или, говоря другими словами, роль нот, по которым исполняется "музыка жизни", характерная для данного организма. Следует особо подчеркнуть, что столь радикальный пересмотр взаимоотношений в системе "ядро-цитоплазма" в пользу главенства цитоплазмы не противоречит законам современной генетики, поскольку касается лишь механизмов экспрессии генов в клетках высших организмов и во многом углубляет представления целостной картины живого. Принцип жизненной динамики можно рассматривать как современный, конкретизированный для живых клеток, с учетом особенностей их состава и пространственного строения, вариант основного принципа термодинамического объяснения функционирования живых систем - принципа устойчивого неравновесия, сформулированного Э.С. Бауэром. В разработке этого варианта использован концептуальный аппарат термодинамики сильно неравновесных сложных открытых динамических систем, а также синергетики - науки о самоорганизации таких систем. Непрерывные физико-химические изменения молекул в процессах жизненной динамики приводят к изменению их дипольных моментов и, как следствие, к неравновесной поляризации структурных компонентов мембранной системы клеток (диэлектриков по своей физической природе). Это может обусловливать так называемый "биоэлектретный эффект", который проявляется в виде электростатических микрополей живых клеток. Генерируемые таким образом поля достаточны по своей величине для того, чтобы влиять в свою очередь на протекание процессов жизненной динамики. В результате возникает единый комплекс взаимосвязанных изменений химического и электрического состояния вещества, образующего живую клетку, так что воздействие на одну из составляющих комплекса неизбежно приводит к перестройке других составляющих, а следовательно, и комплекса в целом.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно