Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Оценка эффективности устройств СДЦ радиолокационных станций с ОВНЦ по целевым показателям

Тип Реферат
Предмет Коммуникации и связь
Просмотров
621
Размер файла
91 б
Поделиться

Ознакомительный фрагмент работы:

Оценка эффективности устройств СДЦ радиолокационных станций с ОВНЦ по целевым показателям

оценка эффективности устройств СДЦ РЛ С ОВНЦ по целевым показателям

Эффективность любой радиотехнической системы характеризует ее способность выполнять определенный комплекс задач в заданных условиях. Количественной мерой эффективности, позволяющей оценивать качество системы при работе в различных ситуациях, сравнивать системы между собой и т.д., являются показатели качества системы.

Обоснованный выбор показателей качества имеет очень важное значение при исследовании и проектировании радиотехнических систем. В общем случае выбираемый показатель качества должен:

- отражать основное назначение системы и соответствовать цели исследования;

- быть количественным, чтобы сравнение систем было обоснованным;

- быть критичным по отношению к параметрам, определяющим его значение;

- допускать достаточно простую физическую трактовку и, по возможности, просто определяться;

- быть достаточно устойчивым, т.е. иметь малый разброс относительно среднего значения.

Основной задачей, стоящей перед радиолокационными станциями (РЛС) с селекцией движущихся целей (СДЦ), как известно, является обнаружение целей, в том числе и на фоне пассивных помех, определение координат и параметров их движения, а также сопровождение целей. Поэтому при анализе РЛС с СДЦ основными являются целевые показатели эффективности, учитывающие вероятность правильного обнаружения цели и точность определения координат объектов при определенной помеховой обстановке.

В режиме обзора наибольшее распространение получили характеристики обнаружения или рабочие характеристики приемника (РХП) РЛС с СДЦ, представляющие собой графические зависимости вероятности правильного обнаружения цели от отношения мощностей сигналов цели и помех при заданных вероятностях ложных тревог.

РХП дают достаточно полную оценку технической эффективности РЛС с СДЦ. Недостатком их является сложность определения и недостаточная критичность по отношению к техническим параметрам, оценивающим качество работы основных узлов станций.

Рассмотрим методику оценки эффективности РЛС с СДЦ на основе сравнительного анализа вероятности правильного обнаружения с учетом влияния кривизны Земли и затухания радиоволн в пространстве в условиях пассивных помех.

В основу методики положен учет изменения отношения сигнал/помеха при применении противником пассивных помех и его увеличение после включения в схему обработки схем защиты от пассивных помех.

Алгоритм методики включает в себя:

1) Расчет вероятности правильного обнаружения в беспомеховой обстановке по методике [1];

2) Определение отношения сигнал/помеха в условиях пассивных помех на основе рассчитанного энергетического спектра мощности помехи;

3) Расчет отношения сигнал/помеха при включении в схему обработки системы СДЦ;

4) Расчет вероятности правильного обнаружения в условиях помех с применением схем защиты.

Расчет вероятности правильного обнаружения в беспомеховой обстановке производится с учетом близости и сферичности Земли в зоне свободного пространства, а также в интерференционной и дифракционной области по формуле с учетом затухания радиоволн при распространении по формуле (1)

,

(1)

где – количество импульсов в принятой пачке;

– отношение сигнал/помеха на входе приемника РЛС с учетом множителя ослабления и ;

– порог обнаружения сигналов с учетом заданной вероятности ложной тревоги .

Порог обнаружения находится решением трансцендентного уравнения (2) или по приближенной формуле (3).

,

(2)

.

(3)

Множители ослабления и вводятся для учета влияния интерференции и дифракции на распространение радиоволн и рассчитываются по формулам (4) и (13) соответственно.

,

(4)

где – модуль коэффициента отражения от поверхности Земли;

– значение диаграммы направленности антенны в направлении падающего луча;

– значение диаграммы направленности по мощности в вертикальной плоскости в направлении прямого луча;

– геометрическая разность хода прямого и отраженного лучей.

Угол между прямым лучом и осью диаграммы направленности антенны рассчитывается по формуле (5)

,

(5)

где – угол наклона антенны в вертикальной плоскости;

– угол места цели;

Угол места цели с учетом кривизны Земли находится из выражения (6)

,

(6)

где – высота цели над поверхностью Земли;

– высота антенны над поверхностью Земли;

– эквивалентный радиус Земли с учетом рефракции радиоволн в атмосфере;

– дальность до цели по поверхности Земли.

,

(7)

где – наклонная дальность до цели.

Для определения разности хода лучей необходимо знать расстояние от РЛС до точки отражения, получаемое из формулы (7)

.

(8)

Величина находится решением кубического уравнения (9)

,

(9)

где ;

.

Разность хода лучей определяется из формулы (10)

.

(10)

Угол скольжения находится из выражения (11)


.

(11)

Модуль коэффициента отражения от взволнованной морской поверхности рассчитывается из выражения (12)

,

(12)

где – средняя высота морской волны;

– длина волны импульса, излученного РЛС.

С увеличение наклонной дальности угол скольжения уменьшается и после достижения критического значения расчеты нужно производить с учетом влияния дифракции на распространение радиоволн.

,

(13)

где – значение множителя ослабления на дальности радиогоризонта;

– приведенная дальность до цели,

– приведенная дальность радиогоризонта;

– дальность радиогоризонта.

– множитель, учитывающий кривизну Земли.

Для сантиметровых и миллиметровых волн зависит только от высотного параметра , который определяется по формуле (14)

.

(14)

где и – приведенные высоты антенны и цели,

,

(15)

,

(16)

.

(17)

Зависимость от аппроксимируется отрезками

.

(18)

Расчет отношения сигнал/помеха при включении в схему обработки устройства СДЦ производится с учетом коэффициента подавления помехи системы защиты по формуле

,

(19)

где – отношение сигнал/помеха при наличии мешающих отражений без применения схем защиты.

Для цифрового фильтра расчет коэффициента подавления помехи сводится к расчету отношения (20) [2]

.

(20)

где – энергетический спектр помехи;

– амплитудно-частотная характеристика (АЧХ) цифрового фильтра.

Энергетический спектр помехи от облака дипольных отражателей (ДО) можно найти через преобразование Фурье корреляционной функции помехи:

.


Корреляционная функция помехи рассчитывается как произведение корреляционных функций, учитывающих влияние отдельных факторов, оказывающих воздействие на облако ДО: [3]

(21)

где – интервал корреляции;

– корреляционная функция, учитывающая разлет элементарных отражателей в облаке;

– корреляционная функция, учитывающая вращение антенны РЛС;

– корреляционная функция, учитывающая движение носителя РЛС.

Причем:

,

(22)

где – длина волны сигнала РЛС;

– среднеквадратическое отклонение (СКО) разлета элементов в облаке.

,

(23)


где – радиальная скорость вращения антенны;

– ширина диаграммы направленности антенны на уровне 0,5;

– величина доплеровского сдвига.

,

(24)

,

(25)

где – угол между курсом носителя и направлением на объект наблюдения;

– скорость носителя РЛС.

В общем случае нормированная корреляционная функция, учитывающая разлет элементарных отражателей в облаке, вращение антенны и движение носителя РЛС, имеет график, представленный на рис. 1.

Нормированная корреляционная функция помехи

рис. 1


(26)

Отношение сигнал/помеха в условиях наличия мешающих отражений без применения схем защиты определяется как (27)

(27)

где – эффективная площадь рассеивания (ЭПР) цели;

– угол места цели;

– ширина диаграммы направленности антенны РЛС в вертикальной плоскости;

– множитель ослабления сигнала;

– ЭПР части помехи, попавшая в разрешенный объем РЛС;

– коэффициент усреднения;

– множитель ослабления помехи.

ЭПР части помехи, попавшая в разрешенный объем РЛС находится из формулы (29)

,

(29)

где – удельная ЭПР всего облака ДО;

– объем помехи, попадающей в разрешенный объем РЛС;

Удельная ЭПР облака ДО при не совпадении поляризации рассчитывается по формуле (30) или (31) – при совпадении поляризации.

,

(30)

,

(31)

где – объемна плотность облака ДО.

Объем помехи находится из выражения (32) с учетом ширины характеристики направленности антенны в вертикальной и горизонтальной плоскостях на уровне 0,5 ( и ) и дистанции до объекта .

,

(32)

где – длина помехи, попадающей в разрешенный объем РЛС;

– площадь помехи, попадающей в разрешенный объем РЛС.

Вследствие значительной протяженности облака ДО в вертикальной плоскости в структуре сигнала присутствует значительное количество интерференционных максимумов и минимумов. Поэтому для упрощения расчетов можно принять значение .

Коэффициент можно принять равным коэффициенту затухания сигнала при обработке в РЛС .

Коэффициент усреднения находится из формулы

,

(28)

где – интеграл вероятности.

Исходя из найденного значения отношения сигнал/помеха вероятность правильного обнаружения с учетом работы схем защиты находим по формуле (1), подставляя значение для соответствующих схем защиты.

На рис. 2 приведены графики зависимости вероятности правильного обнаружения, рассчитанные по предложенной методике, в зависимости от дальности с учетом влияния кривизны Земли и затухания радиоволн при распространении в атмосфере при условии нахождении сигнала от цели и помехи одном разрешаемом объёме, где – вероятность обнаружения целей в беспомеховой обстановке, – вероятность обнаружения целей в условиях помех при включении в схему обработки адаптивных цифровых устройств СДЦ, и – вероятности обнаружения целей в условиях помех при применении схем однократного и двукратного череспериодного вычитания соответственно.

Вероятность правильного обнаружения

рис. 2

Применение представленной методики возможно при проведении расчетов по определению эффективности различных устройств селекции движущихся целей в радиолокационных станциях и комплексах освещения надводной и воздушной обстановки, навигационных РЛС и позволяет сравнивать эффективность устройств различных типов как на этапах разработки проектирования, так и в период эксплуатации.


Список использованных источников

радиолокационная станция селекция движущихся целей

1) Гребцов Г.М. Эффективность обнаружения целей корабельными РЛС, ВМОЛУА, 1988.

2) Бакулев П.А. Радиолокация движущихся целей. М.: Сов. радио, 1964.

3) Бакулев П.А., Степин В.М. Методы и устройства СДЦ. М.: Сов. радио, 1986.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно