Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Окремі випадки задач оптимального стохастичного керування

Тип Реферат
Предмет Коммуникации и связь
Просмотров
698
Размер файла
389 б
Поделиться

Ознакомительный фрагмент работы:

Окремі випадки задач оптимального стохастичного керування

ОКРЕМІ ВИПАДКИ ЗАДАЧ ОПТИМАЛЬНОГО СТОХАСТИЧНОГО КЕРУВАННЯ

1.Зовнішній інтеграл

Функції і можуть бути довільними, а математичні сподівання можна обчислювати, якщо як функція від є вимірною.

Якщо ж оптимальна стратегія, отримана в результаті оптимізації, виявиться невимірною, то і функція може виявитися невимірною. У цьому випадку математичне сподівання невизначено.

Для розв’язання цієї проблеми застосовують два підходи. Перший полягає в накладенні на функції і таких обмежень, які забезпечували б вимірність підінтегральної функції на кожному кроці оптимізації : функції і , , повинні бути неперервними по своїх аргументах і повинна існувати щільність імовірності розподілу випадкової величини , а множини значень припустимих стратегій повинні бути компактними.

На жаль, на практиці ці вимоги не завжди виконуються. Тому другий підхід пов’язаний з використанням зовнішнього інтеграла.

Позначимо через простір елементарних подій, що є довільною множиною, а – деяка система підмножин множини .

Математичним сподіванням випадкової величини , заданої на імовірнісному просторі , називається число , якщо інтеграл з правої частини існує.

Нехай і – борелівські простори, , є -алгеброю в . Функція називається -вимірною, якщо для будь-якої множини . Тут – борелівська -алгебра простору .

Для функції , () зовнішній інтеграл за мірою визначається як нижня грань інтегралів від всіх вимірних функцій (), що мажорують , тобто

, .

Тут – функція розподілу випадкової величини , що відповідає ймовірнісній мірі .

Для довільної функції має місце співвідношення:

,

де , , і вважають, що .

Оскільки зовнішній інтеграл визначений для будь-якої функції, як для вимірної, так і для невимірної, то ніяких додаткових обмежень на функції і накладати не треба.

Для вимірних функцій обидва види математичних сподівань співпадають. Отже, у постановках задач можна замінити звичайне математичне сподівання на зовнішнє, і навіть якщо знайдена при цьому функція виявиться вимірною, то отримана стратегія керування не перестане бути оптимальною.

Зовнішня міра множини визначається співвідношенням .

Для будь-якої множини

,


де – це індикатор множини , що визначається як

а) якщо , то ;

б) якщо і , то ;

в) якщо або , то ;

г) якщо задовольняє рівності , то для будь-якої функції має місце рівність ;

д) якщо , то для будь-якої функції ;

е) якщо і , то . Якщо при цьому хоча б одна з функцій або -вимірна, то останнє співвідношення вірно зі знаком рівності.

Позначимо через дійсну пряму, а через – розширену дійсну пряму і надалі у всіх висновках замість дійсної прямої використовуватимемо поняття розширеної дійсної прямої.

Вважатимемо, що для розширеної дійсної прямої мають місце всі співвідношення порядку додавання і множення, які було введено для , і припустимо, що і .

Позначимо через множину всіх дійсних у розширеному розумінні функцій , де – простір станів.

– банахів простір всіх обмежених дійсних функцій з нормою, що визначається за формулою

, .


Позначатимемо , якщо , , і , якщо , , .

Для будь-якої функції і будь-якого числа позначимо через функцію, що приймає значення в кожній точці , так, що

, .

Припущення монотонності. Для будь-яких станів , керування і функцій мають місце нерівності

якщо і ;

, якщо і ;

, якщо , і .

Для будь-якого стратегія називається -оптимальною при горизонті , якщо

і -оптимальною, якщо

Багато задач послідовної оптимізації, що становлять практичний інтерес, можуть розглядатися як окремі випадки задач загального виду. Розглянемо деякі з них:

· задачі детермінованого оптимального керування;

· задачі стохастичного керування зі зліченним простором збурень;

· задачі стохастичного керування із зовнішнім інтегралом;

· задачі стохастичного керування з мультиплікативним функціоналом витрат;

· задачі мінімаксного стохастичного керування.

2. Детерміноване оптимальне керування

Розглянемо відображення , що задане формулою

, , , (1)

за таких припущень:

функції і відображають множину відповідно в множини і , тобто , ; скаляр додатний.

За цих умов відображення задовольняє припущенню монотонності. Якщо функція дорівнює нулю, тобто , , то відповідна -крокова задача оптимізації (1) набуває вигляду:

, (2)

. (3)

Ця задача є задачею детермінованого оптимального керування зі скінченним горизонтом. Задача з нескінченним горизонтом має наступний вигляд:


, (4)

. (5)

Границя в (4) існує, якщо має місце хоча б одна з наступних умов:

· , , ;

· , , ;

· , , , і деякого .

У задачі (4) – (5) може бути уведене додаткове обмеження на стан системи , . У такому разі, якщо , позначатимемо .

3. Оптимальне стохастичне керування: зліченний простір збурень

Розглянемо відображення , що задане формулою

, (6)

за таких припущень:

параметр приймає значення зі зліченної множини з заданим розподілом ймовірностей , що залежать від і ; функції і відображають множину відповідно в множини і , тобто , ; скаляр додатний.

Якщо , , – елементи множини , – довільний розподіл ймовірностей на , а – деяка функція, то математичне сподівання визначається за формулою


,

де ,

,

.

Оскільки , то математичне сподівання визначене для будь-якої функції і будь-якого розподілу ймовірностей на множині .

Зокрема, якщо , ,… – розподіл ймовірностей на множині , то формулу (6) можна переписати так:

При використанні цього співвідношення треба пам’ятати, що для двох функцій , рівність має місце, якщо виконується хоча б одна з трьох умов:

та ;

та ;

та .

Відображення задовольняє припущенню монотонності. Якщо функція – тотожний нуль, тобто , , то за умови , , функцію витрат за кроків можна подати у вигляді:


(7)

де , .

Ця умова означає, що математичне сподівання обчислюється послідовно по всіх випадкових величинах .

При цьому зміна порядку операцій додавання і узяття математичного сподівання припустима, тому що , , і для довільних простору з мірою , вимірної функції і числа має місце рівність .

Якщо виконується одна з двох нерівностей

або

,

то функцію витрат за кроків можна записати у вигляді:

,


де математичне сподівання обчислюється на добутку мір на , а стани , , виражаються через за допомогою рівняння .

Якщо функція допускає подання у такому вигляді для будь-якого початкового стану та будь-якої стратегії , то -крокова задача може бути сформульована так:

, (8)

. (9)

Відповідна задача з нескінченним горизонтом формулюється так:

, (10)

. (11)

Границя в (10) існує при виконанні будь-якої з трьох наступних умов:

· , , , ;

· , , , ;

· , , , , і деякого .

Математичне сподівання визначається і як звичайний інтеграл, і як зовнішній інтеграл з -алгеброю в множині , що складається із всіх підмножин , в залежності від вимірності або невимірності функцій.

Для багатьох практичних задач виконується припущення про зліченність множини .

Якщо ж множина незліченна, то справа ускладнюється необхідністю обчислення математичного сподівання

для будь-якої функції . Подолання цих труднощів і пов’язане з використанням зовнішнього інтеграла.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно