Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Ёмкость плавного p-n перехода

Тип Реферат
Предмет Коммуникации и связь
Просмотров
459
Размер файла
367 б
Поделиться

Ознакомительный фрагмент работы:

Ёмкость плавного p-n перехода

Распределение электрического поля и потенциала


Чтобы рассчитать распределение электрического потенциала в месте контакта, необходимо решитьуравнение Пуассона. Для одного измерения оно выглядит следующим образом:


φ(х) – распределение потенциала, - объёмная плотность электрического заряда, ε – диэлектрическая проницаемость.

В самом общем случае определяется суммой всех зарядов, которые существуют в материале, т.е. . Разные знаки связаны с разным зарядом. При комнатной температуре примеси полностью ионизированы, и значения и (концентрации ионизированных примесей) равны и .

С концентрацией носителей заряда оказывается сложнее поскольку она меняется на протяжении p-n перехода. В первом приближении можно считать, что в p-n переходе нет носителей заряда (обеднённый слой). Как показывают численные расчёты, это приближение оказывается достаточно точным, поскольку изменение концентрации электронов и дырок на протяжении p-n перехода изменяется как минимум на порядок. И только на границах p-n перехода приближение оказывается не точным, поскольку концентрация – плавная функция и не имеет разрывов. Однако размеры этих приграничных слоёв очень малы, намного меньше реальных размеров p-n перехода.

Следовательно, в области p-n перехода объёмная плотность заряда определяется только распределением примеси , которое в общем случае представляет собой произвольную кривую. Однако тогда невозможно решить аналитически уравнение Пуассона. Даже если взять экспоненциальную зависимость концентрации примеси (приближённое описание процесса диффузии), решение оказывается настолько сложным, что теряет всякий смысл. Поэтому резонно разложить кривую распределения примеси в ряд Тейлора и искать приближенное решение.

Плавный p-n перехода

Первое приближение даёт линейное распределение примеси (рис. 1). Такое приближение достаточно хорошо описывает некоторые диффузионные p-n переходы и переходы коллектор-база в биполярных приборах. P-n переход в этом случае называется плавным. Объёмный заряд линейно зависит от х и определяется

где a –градиент концентрации примеси, т.е. первая производная кривой

распределения примеси в точке металлургического контакта. Тогда первое

интегрирование даст следующий результат:

Здесь - постоянная величина, которая появляется при интегрировании.

Для определения этой величины следует ввести граничные условия.

Известно, что напряжённость электрического поля определяется как

Рис. 1 , следовательно, мы получили распределение напряжённости электрического поля вдоль оси x, взятое с обратным знаком. Если считать, что проводимость полупроводников в объёме намного больше проводимости слоя объёмного заряда, то всё электрическое поле сосредоточено в слое объёмного заряда, а в объёме полупроводников оно равно нулю. Следовательно, для и . Тогда

для , для и , .

Второе интегрирование позволяет получить распределение потенциала вдоль оси x:


Обозначим и потенциалы n- и р- областей соответственно, тогда


и



Как и для предыдущего решения, при x=0 значения функции и её производной должны быть одинаковыми для обеих формул, т.е.

и (1)

Отсюда следует, что в отличие от резкого, плавный р-n переход всегда симметричный и

, а разность потенциалов n- и р- областей равна:

И тогда толщина плавного р-n перехода:


(2)

Барьерная ёмкость.

По определению, ёмкость – скорость изменения заряда при изменении приложенного напряжения, т.е. . Изменение заряда в переходе связано с изменением толщины области обеднения, которая зависит от приложенного напряжения. Рассчитаем ёмкость для плавного р-n перехода.

Задание 1

Ёмкость плавного р-n перехода.

Исходя из рис. 1 и соотношения (1) получаем изменение заряда:


а изменение напряжения – из (2)

И опять барьерная ёмкость определяется по формуле плоского конденсатора

Получившийся одинаковый результат не случайность, а следствие связи между зарядом и потенциалом через уравнение Пуассона, и полученную формулу для ёмкости вообще-то можно доказать для любого распределения примеси. Хотя следует отметить различие между плоским конденсатором и р-n переходом: изменение заряда в конденсаторе происходит за счёт изменения плотности заряда при неизменном расстоянии между обкладками, а в р-n переходе – за счёт изменения области, занимаемой зарядом при неизменной его плотности.

Исходя из получившийся формулы для барьерной ёмкости следует, что последняя будет зависеть от приложенного напряжения, поскольку от него зависит толщина области объёмного заряда. При прямых напряжениях больших, чем исчезает само понятие барьерной ёмкости, поскольку исчезает область объёмного заряда.


Задание 2

Рассчитать величину барьерной ёмкости плавного р-n перехода при 300 К и прямом

напряжении

Дано:

T = 300 K



Т.к. примеси полностью истощены и собственная проводимость ещё очень мала, то можно предположить:

;

Контактная разность потенциалов

(В)


Барьерная ёмкость


Распределение электрического поля и потенциала


Чтобы рассчитать распределение электрического потенциала в месте контакта, необходимо решитьуравнение Пуассона. Для одного измерения оно выглядит следующим образом:


φ(х) – распределение потенциала, - объёмная плотность электрического заряда, ε – диэлектрическая проницаемость.

В самом общем случае определяется суммой всех зарядов, которые существуют в материале, т.е. . Разные знаки связаны с разным зарядом. При комнатной температуре примеси полностью ионизированы, и значения и (концентрации ионизированных примесей) равны и .

С концентрацией носителей заряда оказывается сложнее поскольку она меняется на протяжении p-n перехода. В первом приближении можно считать, что в p-n переходе нет носителей заряда (обеднённый слой). Как показывают численные расчёты, это приближение оказывается достаточно точным, поскольку изменение концентрации электронов и дырок на протяжении p-n перехода изменяется как минимум на порядок. И только на границах p-n перехода приближение оказывается не точным, поскольку концентрация – плавная функция и не имеет разрывов. Однако размеры этих приграничных слоёв очень малы, намного меньше реальных размеров p-n перехода.

Следовательно, в области p-n перехода объёмная плотность заряда определяется только распределением примеси , которое в общем случае представляет собой произвольную кривую. Однако тогда невозможно решить аналитически уравнение Пуассона. Даже если взять экспоненциальную зависимость концентрации примеси (приближённое описание процесса диффузии), решение оказывается настолько сложным, что теряет всякий смысл. Поэтому резонно разложить кривую распределения примеси в рад Тейлора и искать приближенное решение.

Плавный p-n перехода

Первое приближение даёт линейное распределение примеси (рис. 1). Такое приближение достаточно хорошо описывает некоторые диффузионные p-n переходы и переходы коллектор-база в биполярных приборах. P-n переход в этом случае называется плавным. Объёмный заряд линейно зависит от х и определяется

где a –градиент концентрации примеси, т.е. первая производная кривой

распределения примеси в точке металлургического контакта. Тогда первое

интегрирование даст следующий результат:

Здесь - постоянная величина, которая появляется при интегрировании.

Для определения этой величины следует ввести граничные условия.

Известно, что напряжённость электрического поля определяется как

Рис. 1 , следовательно, мы получили распределение напряжённости электрического поля вдоль оси x, взятое с обратным знаком. Если считать, что проводимость полупроводников в объёме намного больше проводимости слоя объёмного заряда, то всё электрическое поле сосредоточено в слое объёмного заряда, а в объёме полупроводников оно равно нулю. Следовательно, для и . Тогда

для , для и , .

Второе интегрирование позволяет получить распределение потенциала вдоль оси x:


Обозначим и потенциалы n- и р- областей соответственно, тогда


и



Как и для предыдущего решения, при x=0 значения функции и её производной должны быть одинаковыми для обеих формул, т.е.

и

Отсюда следует, что в отличие от резкого, плавный р-n переход всегда симметричный и

, а разность потенциалов n- и р- областей равна:

И тогда толщина плавного р-n перехода:



Распределение электрического поля и потенциала


Чтобы рассчитать распределение электрического потенциала в месте контакта, необходимо решитьуравнение Пуассона. Для одного измерения оно выглядит следующим образом:


φ(х) – распределение потенциала, - объёмная плотность электрического заряда, ε – диэлектрическая проницаемость.

В самом общем случае определяется суммой всех зарядов, которые существуют в материале, т.е. . Разные знаки связаны с разным зарядом. При комнатной температуре примеси полностью ионизированы, и значения и (концентрации ионизированных примесей) равны и .

С концентрацией носителей заряда оказывается сложнее поскольку она меняется на протяжении p-n перехода. В первом приближении можно считать, что в p-n переходе нет носителей заряда (обеднённый слой). Как показывают численные расчёты, это приближение оказывается достаточно точным, поскольку изменение концентрации электронов и дырок на протяжении p-n перехода изменяется как минимум на порядок. И только на границах p-n перехода приближение оказывается не точным, поскольку концентрация – плавная функция и не имеет разрывов. Однако размеры этих приграничных слоёв очень малы, намного меньше реальных размеров p-n перехода.

Следовательно, в области p-n перехода объёмная плотность заряда определяется только распределением примеси , которое в общем случае представляет собой произвольную кривую. Однако тогда невозможно решить аналитически уравнение Пуассона. Даже если взять экспоненциальную зависимость концентрации примеси (приближённое описание процесса диффузии), решение оказывается настолько сложным, что теряет всякий смысл. Поэтому резонно разложить кривую распределения примеси в ряд Тейлора и искать приближенное решение.

Плавный p-n перехода

Первое приближение даёт линейное распределение примеси (рис. 1). Такое приближение достаточно хорошо описывает некоторые диффузионные p-n переходы и переходы коллектор-база в биполярных приборах. P-n переход в этом случае называется плавным. Объёмный заряд линейно зависит от х и определяется

где a –градиент концентрации примеси, т.е. первая производная кривой

распределения примеси в точке металлургического контакта. Тогда первое

интегрирование даст следующий результат:

Здесь - постоянная величина, которая появляется при интегрировании.

Для определения этой величины следует ввести граничные условия.

Известно, что напряжённость электрического поля определяется как

Рис. 1 , следовательно, мы получили распределение напряжённости электрического поля вдоль оси x, взятое с обратным знаком. Если считать, что проводимость полупроводников в объёме намного больше проводимости слоя объёмного заряда, то всё электрическое поле сосредоточено в слое объёмного заряда, а в объёме полупроводников оно равно нулю. Следовательно, для и . Тогда

для , для и , .

Второе интегрирование позволяет получить распределение потенциала вдоль оси x:


Обозначим и потенциалы n- и р- областей соответственно, тогда


и



Как и для предыдущего решения, при x=0 значения функции и её производной должны быть одинаковыми для обеих формул, т.е.

и (1)

Отсюда следует, что в отличие от резкого, плавный р-n переход всегда симметричный и

, а разность потенциалов n- и р- областей равна:

И тогда толщина плавного р-n перехода:


(2)

Барьерная ёмкость.

По определению, ёмкость – скорость изменения заряда при изменении приложенного напряжения, т.е. . Изменение заряда в переходе связано с изменением толщины области обеднения, которая зависит от приложенного напряжения. Рассчитаем ёмкость для плавного р-n перехода.

Задание №1

Ёмкость плавного р-n перехода.

Исходя из рис. 1 и соотношения (1) получаем изменение заряда:


а изменение напряжения – из (2)

И опять барьерная ёмкость определяется по формуле плоского конденсатора

Получившийся одинаковый результат не случайность, а следствие связи между зарядом и потенциалом через уравнение Пуассона, и полученную формулу для ёмкости вообще-то можно доказать для любого распределения примеси. Хотя следует отметить различие между плоским конденсатором и р-n переходом: изменение заряда в конденсаторе происходит за счёт изменения плотности заряда при неизменном расстоянии между обкладками, а в р-n переходе – за счёт изменения области, занимаемой зарядом при неизменной его плотности.

Исходя из получившийся формулы для барьерной ёмкости следует, что последняя будет зависеть от приложенного напряжения, поскольку от него зависит толщина области объёмного заряда. При прямых напряжениях больших, чем исчезает само понятие барьерной ёмкости, поскольку исчезает область объёмного заряда.


Задание №2

Рассчитать величину барьерной ёмкости плавного р-n перехода при 300 К и прямом

напряжении

Дано:

T = 300 K



Т.к. примеси полностью истощены и собственная проводимость ещё очень мала, то можно предположить:

;

Контактная разность потенциалов

(В)


Барьерная ёмкость




Ответ: 167 пФ


Таким образом, при наложении на исследуемый р-n переход напряжения прямого смещения

. Его барьерная ёмкость равна 167 пФ.


Задание №3

Построить график зависимости барьерной ёмкости от температуры.


;

то то

В




T n(T)

70

160.2
100

160.5
150

161.43
200

162.57
250

163.94
300

166.5




Знак «+» берётся при приложенном обратном напряжении,

Знак «-» берётся при приложенном прямого напряжения.

- контактная разность потенциалов.


Литература:

С.П. Медведев. Физика полупроводниковых и микроэлектронных приборов (биполярные приборы), учебное пособие.

Епифанов, Мома. Физические основы конструирования и технологии РЭА и ЭВА.


Кузнецкий институт информационных и

управленческих технологий

(филиал ПГУ)

Кафедра Микроэлектроники


Курсовая работа

По дисциплине: Физические основы микроэлектроники

Тема: Ёмкость плавного р-nперехода


Проверил: Абрамов В.Г.

Выполнил: студент гр. 02КР1

Кулиш С.В.


г. Кузнецк

2003 г.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 395 оценок star star star star star
среднее 4.9 из 5
ЮУрГУ
Анна очень добросовестный исполнитель, я буду обращаться к ней еще. Задание выполнено намн...
star star star star star
ОГИС
Работа выполнена быстро и качественно! По написанию-доступна к восприятию! Легко читается!...
star star star star star
ИРНИТУ
Работа выполнена досрочно, исполнитель всегда на связи, можно обсудить интересующие вопрос...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

построить логическую схему F(a, b) под цифрой...

Решение задач, Информатика

Срок сдачи к 15 янв.

2 минуты назад
4 минуты назад

Проектирование различных форм взаимодействия органов местного самоуправления со СМИ

Магистерская диссертация, Государственное и муниципальное управление

Срок сдачи к 31 мар.

11 минут назад

Сделать презентацию + доклад

Презентация, основы теории английского языка

Срок сдачи к 15 янв.

11 минут назад

Оценка эффективности использования оборотного капитала предприятия

Курсовая, Анализ финансово-хозяйственной деятельности (афхд)

Срок сдачи к 29 янв.

11 минут назад

Контрольная работа

Решение задач, БЖД

Срок сдачи к 18 янв.

11 минут назад

Курсовая по предмету «Экономика»

Курсовая, Экономика

Срок сдачи к 27 янв.

11 минут назад

Выпускная квалификационная работа

Диплом, Машиностроение

Срок сдачи к 31 янв.

11 минут назад

выделить цифры на картинках ярким цветом

Другое, Медицина

Срок сдачи к 15 янв.

11 минут назад

Сделать курсовую работу и 3 лабораторных работы

Курсовая, Математические основы управления и методы инженерных задач

Срок сдачи к 18 янв.

11 минут назад

Размер пенсии по старости, 30-40стр

Курсовая, Право социального обеспечения

Срок сдачи к 13 февр.

11 минут назад

Решить несложное задание

Решение задач, основы технологии машиностроения

Срок сдачи к 15 янв.

11 минут назад

Практическая работа 4, вариант 24. Задание расписано в прикрепленных...

Лабораторная, Теоретические основы электротехники

Срок сдачи к 15 янв.

11 минут назад

построить логическую схему функции F(a, b)

Онлайн-помощь, Информатика

Срок сдачи к 15 янв.

11 минут назад

Решить примеры (9 шт) в Multisim

Лабораторная, Электротехника и электроника

Срок сдачи к 21 янв.

11 минут назад

2 контрольные

Контрольная, Планирование и прогнозирование

Срок сдачи к 16 янв.

11 минут назад

Решить задачи

Решение задач, Начертательная геометрия

Срок сдачи к 15 янв.

11 минут назад

Экономика труда курсовая работа № варианта 4

Курсовая, Экономика предприятия

Срок сдачи к 18 янв.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно