Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Теория телетрафика

Тип Реферат
Предмет Коммуникации и связь
Просмотров
1570
Размер файла
155 б
Поделиться

Ознакомительный фрагмент работы:

Теория телетрафика

Контрольная работа

по дисциплине

«Теория телетрафика»


Законы распределения случайной величины

Таблица1 Исходные данные


Вариант

Емкость АТСNнхNквCнхTнхCквTквN1 ГИТип блока 1ГИ
98000320048003,41201,1140120080*120*400

Задание 1

1.Построить огибающую распределения вероятности занятия линий в пучке из v , на каждую из которых поступает интенсивность нагрузки а, при условии, что:

а) N ≈ v;

6) N>>v;

в) N, v → ∞.

2. Для каждого используемого распределения рассчитать среднее число занятых линий и их дисперсию.

Для расчета число линий в пучке определить из следующего выражения:

(целая часть полученного числа), где NN - номер варианта.

Средняя интенсивность нагрузки, поступающей на одну линию:

для NN ≤15:а = 0,15+0,05(15-NN); для 15 < NN ≤ 25:а= 0,05 +0,05(26-NN).

Примечания.

Для огибающей распределения привести таблицу значений Рi, и i

В распределении Пуассона привести шесть - восемь составляющих, включая значения вероятности для i=[Y] (целая часть числа Y); Y = a*v

Решение

а) Распределение Бернулли (биноминальное распределение) при N ≤ v имеет вид:

,

где можно рассматривать как вероятность занятия любых i линий в пучке из v;

- числоо сочетаний из

а – средняя интенсивность поступающей нагрузки на одну линию v – линейного пучка от N источников а =0,15+0,05(15-NN)= 0,15+0,05(15-9)=0,45

v – число линий в пучке

Рисунок1 Биноминальное распределение

Математическое ожидание и дисперсия числа занятых линий, вероятность занятия которых описывается распределением Бернулли, соответственно равны:

б) Распределение Эрланга используется при N>>vи имеет вид:

где - вероятность занятия любых i линий в пучке из v.

Y – средняя интенсивность нагрузки Y=a*v=0,45*9=4,05

Рисунок 2 Распределение Эрланга

Математическое ожидание и дисперсия числа занятых линий, вероятность занятия которых подчиняется распределению Эрланга, соответственно равны:

в) Распределение Пуассона используется при N, v → ∞ и имеет вид:

где Y – средняя интенсивность нагрузки Y=a*v=0,45*9=4,05

Рисунок 3 Распределение Пуассона

Математическое ожидание и дисперсия числа занятых линий, в бесконечном пучке линий равны между собой и вычисляются по формуле:


Потоки вызовов. Основные свойства и характеристики

Задание 2

На коммутационную систему поступает простейший поток вызовов с интенсивностью Y.

1. Рассчитать вероятности поступления менее k вызовов за промежуток времени [0, t*): Pk(t*), где t*= 0,5; 1,0; 1,5; 2,0.

2. Построить функцию распределения промежутков времени между двумя последовательными моментами поступления вызовов. F(t*), где t*= 0; 0,1; 0,2; ...

3. Рассчитать вероятность поступления не менее k вызовов за интервал времени [0, t*): Pi³k{t*), где t*= 1.

Примечание:

Для расчета значения Y и v взять из задания 1. Число вызовов k определить из выражения: k = [v/2] - целая часть числа.

Для построения графика, рассчитать не менее пяти значений F(t*). Результаты расчета привести в виде таблицы значений F(t*) и t*.

Расчет членов суммы Pi³k{t*) провести не менее, чем для восьми членов суммы.

Решение

1. Вероятность поступления менее k вызовов за промежуток времени [0, t*): Pk(t*), где t*= 0,5; 1,0; 1,5; 2,0; вычислим по формуле:

, где k =0, 1, 2,....;

Y=4,5; v=9 – из первого задания; k=v/2=9/2=4,5=5

Рисунок 4 График распределения вероятности

2. Найдем и построим значения функции распределения промежутков времени между двумя последовательными моментами поступления вызовов по формуле:

, где t*= 0; 0,1; 0,2; ...

График функции распределения

Рисунок 5 График функции распределения

t*0,00,10,20,30,40,50,60,70,80,9
F(t*)0,00.3620.5930.7410.8350.8950.9330.9570.9730.983

Таблица 2 Результаты расчета

3. Рассчитаем вероятность поступления не менее k вызовов за интервал времени [0, t*): Pi³k{t*), где t*= 1, по формуле:

;


Телефонная нагрузка и ее параметры

Задание 3

1. Рассчитать интенсивность поступающей нагрузки на входы ступени 1ГИ для АТСКУ , Эрл.

2. Рассчитать средние интенсивности удельных абонентских нагрузок для абонентских линии народнохозяйственного и квартирного секторов:

, Эрл.;

, Эрл.;

а также среднюю удельную интенсивность нагрузки на абонентскую линию АТС:

, Эрл.;

Пересчитать интенсивность нагрузки на выход ступени 1ГИ.

Примечания:

1. Для расчета интенсивности поступающей нагрузки взять из табл.1 в

зависимости от номера варианта Ni, Сi, Тi. В расчете принять n =5:

2. Нагрузка со входа ступени 1ГИ на ее выход пересчитывается с помощью следующего выражения: Увых1ГИ = (tвых1ГИ / tвх1ГИ) * Увх1ГИ, где tвых1ГИ и tвх1ГИ - соответственно среднее время занятия выхода ступени 1ГИ и среднее время занятия входа ступени 1ГИ. tвых1ГИ=tвх1ГИ- Dt, где Dt -разница между временами занятия входа и выхода ступени 1ГИ. Для АТСКУ: Dt = 0,5*tмави + tмри + tмри + tco + n*tн + tм1ГИ + tм1ГИ. Среднее время занятия входа ступени 1ГИ: tвх1ГИ = Увх1ГИнх / (Nнх * Снх + Nкв * Скв), для расчета принять: кp = 0,6; кз = 0,2; кнo = 0,15; кoш = 0,05.

Решение

Структурный состав источников нагрузки проектируемой АТС:

Абоненты (N)

- народнохозяйственного сектора (НХ) – 2400

- квартирного сектора (КВ) – 5600

Средняя продолжительность разговоров Т в секундах:

Тнх – 90 с; Ткв – 150 с.

Среднее число вызовов, поступающих на АТС в ЧНН:

Снх – 3,7; Скв – 0,9.

Емкость существующей сети N = 55000.

Число действующих станций на ГТС – 7, в т. ч.

NАТС1 – 7000; NАТС2 – 8000; NАТС3 – 6000; NАТС4 – 9000; NАТС5 – 5000; NАТС6 – 10000;

NАТС7 – 10000.

Емкость проектируемой АТС – 8000

Доля вызовов, закончившихся разговором кр = 0,6

Интенсивность поступающей нагрузки на входе ступени 1 ГИ проектируемой АТС может быть определена по формуле:

Увх1ГИ= Nii, где i– категория абонентской линии,

Ni – число абонентских линий i - ой категории

Уi – удельная интенсивность нагрузки поступающая от АЛ i – ой категории на проектируемой АТС

Удельная интенсивность нагрузки от АЛ i – ой категории находится по формуле:

Уi = Ci* ti, где Сi – среднее число вызовов поступающих в ЧНН от АЛ i – ой категории;

ti – средняя длительность занятия входов 1 ГИ вызовом от АЛ i – ой категории

Средняя длительность занятия входов 1 ГИ определяется выражением:

ti = кp*tpi + кз*tз + кно*tно + кош*tоштех*tтех;

где кр – доля вызовов из общего числа закончившихся разговором;

кз – доля вызовов из общего числа не закончившихся разговором из–за занятости вызываемой АЛ;

кно – то же из-за не ответа абонента;

кош – то же из-за ошибок в наборе номера;

ктех – то же из-за технических неисправностей в узлах коммутации (при расчетах ктех= 0);

tpi; tно; tош; tтех – средние длительности занятий соответствующие этим случаям.

В практических расчетах, возможно использовать выражение:

ti = aip*tpi, где ai – коэффициент непроизводительного занятия коммутационной системы, зависящий от Ti и кр. Эта зависимость приведена на рис. 6

Рисунок 6 Коэффициент непроизводительного занятия коммутационной системы

Среднюю длительность занятия 1 ГИ в случае соединения окончившегося разговором можно найти из выражения:

tpi = ty + tпв + Ti + tо,

где ty – средняя длительность установления соединения;

tпв – средняя длительность слушания сигнала «КПВ»(tпв = 7 с.);

Ti – средняя продолжительность разговора для вызова i – ой категории;

to – продолжительность отбоя (to = 0,6 с.)

Средняя длительность установления соединения для АТСКУ определяется по формуле: tу = 0,5*tмави + tмри + tмри + tco + n*tн + t1ГИ + tм1ГИ + tмсд + tмсд, где

tj – среднее время ожидания обслуживания вызова маркером j – степени, tj = 0,1c.;

tмави – время установления соединения МАВ на АИ при исходящей связи tмави = 0,3с.;

tмри – время установления соединения МРИ на ступени РИ, tмри = 0,2 с.;

tм1ГИ – время установления соединения МГИ на ступени 1ГИ, tм1ГИ = 0,65 с.;

tмсд – время установления соединения МСД, tмсд = 1 c.;

tco – средняя длительность слушания сигнала «Ответ станции», tco = 3 c.;

tн – средняя длительность набора одного знака номера, tн = 1,5 с.;

n – значность номера, n = 5.

Тогда вычислим:

ty = 0,5*0,3 +0,1+ 0,2 + 3 + 5*1,5 + 0,1 + 0,65 + 0,1 + 1 = 12,8 с.

tрнх = 12,8 + 7 + 90 + 0,6 = 110,4 с.;

tркв = 12,8 + 7 + 150 + 0,6 = 170,4 с.;

tнх = 1,21 * 0,6 * 110,4 = 80,15 с.;

tкв = 1,12 * 0,6 * 170,4 = 114,509 с.;

Унх = 3,7 * 80,15 / 3600 = 0,082 Эрл.;

Укв = 0,9 * 114,509 / 3600 = 0,029 Эрл.;

Увх1ГИ = 2400 * 0,082 + 5600 * 0,029 = 358,017 Эрл.;

Уисх = 358,017 / (2400 + 5600) = 0,045 Эрл.

Пересчитаем нагрузку со входов на выходы ступеней группового искания. Интенсивность нагрузки с входа на выход пересчитывается с помощью следующего выражения: Увых1ГИ = (tвых1ГИ / tвх1ГИ) * Увх1ГИ, где tвых1ГИ и tвх1ГИ – соответственно средние времена занятия входа и выхода 1 ГИ.

Среднее время занятия входа ступени 1 ГИ:

tвх1ГИ = Увх1ГИ / (Nнх * Снх + Nкв * Скв),

тогда вычислим:

tвх1ГИ = 358,017 / (3,7 * 2400 + 0,9 * 5600) = 0,026 ч. = 92,591 с.

Среднее время занятия выхода 1ГИ:

tвых1ГИ = tвх1ГИ - Dt, где Dt – разница между временами занятия входа и выхода ступени 1ГИ.

для АТСКУ Dt = 0,5*tмави + tмри + tмри + tco + n*tн + tм1ГИ + tм1ГИ = 0,15 +0,1 + 0,2 + 3 + 7,5 + 0,1 + 0,65 = 11,7 с.

tвых1ГИ = 92,591 – 11,7 = 80,891 с.

Увых1ГИ = (80,891 / 92,591) * 358,017 = 312,777 Эрл.


Распределение нагрузки по направлениям

Задание 4

1.Распределить интенсивность нагрузки Увых1ГИ ступени 1ГИ АТСКУ по направлениям методом нормированных коэффициентов тяготения (упрощенная формула). Расстояния между АТС задать в пределах 1 км < Lij < 14 км

2. Определить расчетную интенсивность нагрузки в каждом направлении.

Результаты представить в виде таблицы.

Примечание: Нагрузку на выходе 1ГИ в направлении к АМТС и УСС рассчитать следующим образом: Уамтс = 0,05 * Увых1ГИ; Уусс = 0,02 * Увых1ГИ .

Нагрузка, которая будет распределена по другим направлениям ступени, равна:

Уi= Увых1ГИ – (Уамтс + Уусс).

Для распределения нагрузки по направлениям емкости АТС взять из примечания предыдущего задания.

Решение

Распределим нагрузку по направлениям исходящей и входящей связи. Составим диаграмму распределения нагрузки:

Нагрузка на выходе ступени 1 ГИ распределяется по направлениям исходящей связи. Нагрузку в направлении к АМТС и УСС рассчитаем следующим образом:

Уамтс = 0,05Увых1ГИ = 0,05 * 312,777 = 15,639 Эрл.

Уусс = 0,02Увых1ГИ = 0,02 * 312,777 = 6,256 Эрл.

Нагрузка, которая будет распределена по другим направлениям исходящей связи, равна:

Уi = Увых1ГИ – (Уамтс + Уусс) = 312,777 – (15,639 + 6,256) = 290,882 Эрл.

Эта нагрузка распределяется между станциями сети с помощью нормированных коэффициентов тяготения nij, которые зависят от расстояния между станциями сети Lij, эта зависимость приведена в МУ, стр.12, рис.3.

Нагрузка от проектируемой АТС к другим станциям сети может быть определена из следующей формулы: Уij = nij * Уi * Уj / (nij * Уj),

Это выражение приближенно можно записать в виде: Уij = nij * Nj * Уi / (nij * Nj),

Расстояние от проектируемой АТСКУ до других станций на сети выберем из условия:

1км £Lij£ 14 км

Тогда от АТСКУ до АТСКУ1 2км., nij = 0,8;

до АТСКУ2 3км., nij = 0,75;

до АТСКУ3 4км., nij = 0,67;

до АТСКУ4 5км., nij = 0,62;

до АТСКУ5 6км., nij = 0,57;

до АТСКУ6 7км., nij = 0,52;

до АТСКУ7 8км., nij = 0,5;

При определении внутристанционной нагрузки УijLij = 0, а nij = 1;

Исходящую нагрузку принимаем равной входящей нагрузке, т. е.:

Уij = Уii , Увх.амтс = Уамтс.

Тогда находим:

Уii= 1*8000*290,882/[(0,8*7000)+(0,75*8000)+(0,67*6000)+(0,62*9000)+(0,57*5000)+

+(0,52*10000)+(0,5*10000)] = 67,943 Эрл.

Уатску-атску1 = 0,8 * 7000 * 0,008493 = 47,56 Эрл.;

Уатску-атску2 = 0,75 * 8000 * 0,008493 = 50,957 Эрл.;

Уатску-атску3 = 0,67 * 6000 * 0,008493 = 34,142 Эрл.;

Уатску-атску4 = 0,62 * 9000 * 0,008493 = 47,39 Эрл.;

Уатску-атску5 = 0,57 * 5000 * 0,008493 = 24,205 Эрл.;

Уатску-атску6 = 0,52 * 10000 * 0,008493 = 44,163 Эрл.;

Уатску-атску7 = 0,5 * 10000 * 0,008493 = 42,465 Эрл.;

Общая входящая нагрузка на проектируемой АТС:

Увхi = Уji + Уii = 67,943 + 47,56 + 50,957 + 34,142 + 47,39 + 24,205 + 44,163 + 42,465 =

= 460,729 Эрл.

После определения математических ожиданий интенсивности нагрузки по всем направлениям переходим к расчетным значениям нагрузки по формуле:

Ур = У + 0,674, где У – математическое ожидание интенсивности нагрузки в каждом направлении. Результаты расчета сведем в табл.3

Таблица 3

НаправлениеМатематическое ожидание Уij, Эрл.Расчетная нагрузка Ур , Эрл.
АТСКУ147,5652,20816
АТСКУ250,95755,76829
АТСКУ334,14238,08026
АТСКУ447,3952,02984
АТСКУ524,20527,52098
АТСКУ644,16348,64208
АТСКУ742,46546,85713
Внутристанционная67,94373,49862
УСС6,2567,941809
АМТС15,63918,30441

Метод расчета однозвенных полнодоступных коммутационных схем при обслуживании простейшего потока вызовов в системе с потерями. Первая формула Эрланга

Задание 5

1. Рассчитать необходимое число линии на всех направлениях искания : ступени 1ГИ, предполагая полнодоступное однозвенное включение при заданных нормах величины потерь. Расчетную интенсивность нагрузки взять из предыдущего задания. Результаты занести в таблицу.

2. Рассчитать и построить зависимость числа линий v и коэффициента использования h от величины интенсивности нагрузки при величине потерь Р = 0,0NN, где NN - номер варианта. Результаты расчета представить в виде таблицы и графиков v = f(Y) и h= f(Y) при Р = const.

3. Построить зависимость величины потерь Ev,v(Y) от интенсивности поступающей нагрузки при фиксированном значении числа линий в направлении к УСС. Диапазон изменения величины потерь принять от 0,0001 до 0,2 (соответствующим выбором Y). Результаты представить в виде таблицы и графика Р =f(Y) при v = const.

Решение

1.Расчет необходимого числа линий на всех направлениях искания ступени 1ГИ таб.4

Таблица 4

НаправлениеРасчетная нагрузка Ур , Эрл.РРтабл.v
АТСКУ152,208160,0050,00569
АТСКУ255,768290,0050,00573
АТСКУ338,080260,0050,00553
АТСКУ452,029840,0050,00569
АТСКУ527,520980,0050,00540
АТСКУ648,642080,0050,00565
АТСКУ746,857130,0050,00563
Внутри-станционная73,498620,0030,00393
УСС7,9418090,0010,00121
АМТС18,304410,010,0128

2. Рассчитаем и построим зависимость числа линий v и коэффициента использования h от величины интенсивности нагрузки при величине потерь Р = 0,008 по формулам:

h = У0/v, где У0 – обслуженная нагрузка,

У0 = У – Упот = У * [1 – Еv,v(У)] = У * 0,985

Таблица 5 Результаты расчета

№п.п.У, Эрл.vРтабл.У0h
1150,0070,9850,197
2390,0072,9550,328333
35120,0074,9250,410417
410190,0079,850,518421
515250,00714,7750,591
620310,00719,70,635484
725370,00724,6250,665541
830430,00729,550,687209
940540,00739,40,72963
1050660,00749,250,746212

Рисунок 7 График зависимости v = f(Y)

h

Рисунок 8 График зависимости h= f(Y)

3. Построим зависимость величины потерь Ev,v(Y) от интенсивности поступающей нагрузки при фиксированном значении числа линий в направлении к УСС.

Результаты расчета при v = const = 20 таб.6


Таблица 6

№п.п12345678910
У, Эрл.7,708,168,448,839,4010,4611,0411,4511,9112,92
Ртабл.0,00010,00020,00030,00050,0010,0030,0050,0070,010,02

Рисунок 9 График зависимости Р =f(Y)


Метод расчета однозвенных полнодоступных коммутационных схем при обслуживании примитивного потока вызовов в системе с потерями. Первая формула Энгсета - Фрайя

Задание 6

1. Используя таблицы (приложение 2), рассчитать для заданных значений v и а при n = 20 вероятности Рt, Рв, Рн, сравнить их по величине. Для расчета значения v и а взять из задания 1. Если а > 0,5, то принять а = а/2.

2. Построить зависимость числа линий v от интенсивности нагрузки при фиксированном значении Рв = 0,0NN при n = 10, 30, 60. На этом же рисунке построить зависимость v = f(Y) для обслуживания простейшего потока вызовов. Результаты представить в виде таблицы. Объяснить полученные зависимости.

Решение

1. Рассчитаем вероятности Рt, Рв, Рн по формулам:

;

;

,

где а = 0,5 – интенсивность нагрузки от одного источника;

v = 9 – число линий в пучке;

n = 20 – число источников нагрузки, из условия задания.

;

;

;

По результатам расчета видно, что Рt> Рв> Рн.

2. Построим зависимость числа линий v от интенсивности нагрузки при фиксированном значении Рв = 0,0NN = 0,008 при n = 10, 30, 60. На этом же рисунке построим зависимость v = f(Y) для обслуживания простейшего потока вызовов.

Результаты расчета при Рв = 0,007 приведены в таб.7

Таблица 7

График зависимости числа линий v от интенсивности нагрузки рис.10

№п.п.aY = a*nv
n = 50,52,55
n = 100,559
n = 200,51015
n = 300,51522
n = 400,52027
n = 500,52533
n = 700,53544
n = 1000,54561
n = ∞0,55065

Рисунок 10 График зависимости числа линий v от интенсивности нагрузки

Характер зависимости величины поступающей нагрузки Y от емкости пучка линий, который обслуживает вызовы примитивного потока, поступающие от фиксированного числа источников n такой же, как и при обслуживании вызовов простейшего потока. Однако на пропускную способность пучка влияет число источников вызовов n: в области малых потерь с уменьшением n увеличивается пропускная способность пучка. Из выше приведенного графика видно, что при данном качестве обслуживания поступающая на v линий пучка нагрузка создаваемого вызовами примитивного потока от любого числа источников имеет большую величину по сравнению с нагрузкой Y, создаваемой вызовами простейшего потока.

Таким образом, с точки зрения величины обслуживаемой нагрузки примитивный поток всегда «лучше» простейшего потока вызовов.


БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Корнышев Ю. Н., Пшеничников А. П., Харкевич А. Д. Теория телетрафика - М.: Радиои связь, 1996. - 272 с.

2. Лившиц B.C., Пшеничников А.П., Харкевич А.Д. Теория телетрафика - М.: Связь, 1979. - 224 с.

3. Шнепс М.А. Системы распределения информации. Методы расчета. М.: Связь, 1979. -342 с.

4. Корнышев Ю.Н., Фань Г.Л. Теория распределения информации. М.: Радио и связь, 1985.-184 с.

5. Башарин Г.Л. Таблицы вероятностей и средних, квадратичных отклонений потерь на полнодоступном пучке линий. - М.: АН СССР 1962. -128 с.

6. Учебное пособие по курсовому проектировании координатных АТС / Р.А. Аваков, М.А. Подвида, В.Е. Родзянко- Л., 1961. - 102 с.

7. Лившиц B.C., Фидлин Л.В. Системы массового обслуживания с конечным числом источников. - М.: Связь, 1968. - 167 с.

8. Ионин Г.Л., Седол Я.Я. Таблицы вероятностных характеристик полнодоступного пучка при повторных вызовах. - М.: Наука, 1970. -155 с.

9. Захаров Т.П., Варакосин Н.П. Расчет количества каналов связи при обслуживании с ожиданием. - М.: Связь, 1967. - 194 с.

10. Проектирование координатных автоматических телефонных станций типа АТСК /М.Ф. Когш, З.С. Коханова, О.И. Панкратова и др. / ВЗЭЙС. - М.: 1969. -143 с.

11. Блинова Р.Д., Курносова Н.И. Методические указания для выполнения курсовой работы по курсу "Теория распределения информации". - М.: МТУСИ,'1994. - 26 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
ИжГТУ имени М.Т.Калашникова
Сделала все очень грамотно и быстро,автора советую!!!!Умничка😊..Спасибо огромное.
star star star star star
РГСУ
Самый придирчивый преподаватель за эту работу поставил 40 из 40. Спасибо большое!!
star star star star star
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи по математике

Решение задач, Математика

Срок сдачи к 14 дек.

только что

Чертеж в компасе

Чертеж, Инженерная графика

Срок сдачи к 5 дек.

только что

Выполнить курсовой по Транспортной логистике. С-07082

Курсовая, Транспортная логистика

Срок сдачи к 14 дек.

1 минуту назад

Сократить документ в 3 раза

Другое, Информатика и программирование

Срок сдачи к 7 дек.

2 минуты назад

Сделать задание

Доклад, Стратегическое планирование

Срок сдачи к 11 дек.

2 минуты назад

Понятия и виды пенсии в РФ

Диплом, -

Срок сдачи к 20 янв.

3 минуты назад

Сделать презентацию

Презентация, ОМЗ

Срок сдачи к 12 дек.

3 минуты назад

Некоторые вопросы к экзамену

Ответы на билеты, Школа Здоровья

Срок сдачи к 8 дек.

5 минут назад

Приложения AVA для людей с наступающим слуха

Доклад, ИКТ

Срок сдачи к 7 дек.

5 минут назад

Роль волонтеров в мероприятиях туристской направленности

Курсовая, Координация работы служб туризма и гостеприимства

Срок сдачи к 13 дек.

5 минут назад

Контрольная работа

Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления

Срок сдачи к 30 дек.

5 минут назад
6 минут назад

Линейная алгебра

Контрольная, Математика

Срок сдачи к 15 дек.

6 минут назад

Решить 5 кейсов бизнес-задач

Отчет по практике, Предпринимательство

Срок сдачи к 11 дек.

7 минут назад

Решить одну задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

9 минут назад

Решить 1 задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

10 минут назад

Выполнить научную статью. Юриспруденция. С-07083

Статья, Юриспруденция

Срок сдачи к 11 дек.

11 минут назад

написать доклад на тему: Процесс планирования персонала проекта.

Доклад, Управение проектами

Срок сдачи к 13 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно